DOI: https://doi.org/10.15407/techned2016.06.010


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 6, 2016 (November/December)
Pages 10 – 19


L.M.Lobanov1, I.P.Kondratenko2*, A.V.Zhyltsov3**, O.M.Karlov2, M.O.Pashchyn1, V.V.Vasyuk3, V.A.Yashchuk1
1 – Paton Welding Institut National Academy of Science of Ukraine,
vul. Bozhenko,11, Kyiv-150, 03680, Ukraina
2 – Institut of Elektrodynamics National Academy of Science of Ukraine,
pr. Peremohy, 56, Kyiv-57, 03680, Ukraina,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
3 – National university of life and environmental sciences of Ukraine,
vul. Heroiv oborony, 12, Kyiv, 03041, Ukraina,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0003-1914-1383
** ORCID ID : http://orcid.org/0000-0002-1688-7879



A three-dimensional integral-differential mathematical model of the process of capacity discharge to the electromagnetic system with inductance coil and electrode, connected in series, was developed. The magnetic field of the coil excites the eddy currents in the electrically-conductive plate which is mounted under the coil, generating, as a result, the electromagnetic force which presses the electrode against the surface. The optimal circuit parameters were established to generate the pressing force. An electrodynamics treatment of welded joints was carried out, the modes were determined, at which the change of tension force to compression force is achieved, the fatigue strength of welded joints under the cyclic loading was increased more than twice. References 9, figures 9.


Key words: welding residual stresses, electrode system, current pulse, Maxwell's equations, method of integral equations, electrodynamics forces


Received:    23.06.2016
Accepted:    05.07.2016
Published:  27.10.2016



1. Baranov Yu.V., Troytskyy O.A., Avraamov Yu.S., Shlyapyn A.D. Physical fundamentals of electro and electroplastic treatments and new materials.  Moskva: Moskovskii gosudarstvennyi industrialnyi universitet, 2001.  844 р. (Rus)
2. Bozhenko A.I., Petrushenko E.I. Computer simulation of transients in axisymmetric devices with non-magnetic conductors based on the symmetry of the original integrodifferential equation.  Kyiv: Institut Elektrodinamiki AN USSR, 1984.  51 р. (Preprint / AN USSR, Institut elektrodinamiki; 372). (Rus)
3. Bolyukh V.F., Oleksenko S.V., Shchukyn I.S. Comparative analysis of linear pulsed electromagnetic and electromechanical transducers induction type. Tekhnichna Elektrodynamika.  2016.  No 5.  Р. 46–48. (Rus)
4. Lobanov L.M., Pyvtorak V.A., Savytskyy V.V., Tkachuk H.Y. Method of determination of residual stresses in welded joints and structural elements using electronic speckle pattern interferometry. Avtomaticheskaia svarka. 2006.  No 1.  Р. 10–13. (Rus)
5. Lobanov L.M., Pashchyn N.A., Cherkashyn A.V., Mykhoduy O.L., Kondaratenko I.P. The effectiveness of electrodynamic machining aluminum alloy AMg6 and welded joints. Avtomaticheskaia svarka.  2012.  No 1.  Р. 3–7. (Rus)
6. Sahalevych V.M. Methods for removing the welding deformation and stress.  Moskva: Mashinostroenie, 1974.  248 р. (Rus)
7. Tozony O.V. Calculation of electromagnetic fields on computers.  Kyiv: Tekhnika, 1968.  252 p. (Rus)
8. Kondratenko I., Zhiltsov A., Vasyuk V. Modelling of electromagnetic processes in electrotechnical complexes for reducing residual stresses. Electromechanical and energy saving system.  Kremenchuk: KrNU.  2014.  No 3/2014 (27).  P. 61–67.
9. Masubuchi K. Analisis of Welded structures.  Pergamon Press, 1980.  642 p.