PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.05.010

MULTIOBJECTIVE SYNTHESIS OF TWO DEGREE OF FREEDOM NONLINEAR ROBUST CONTROL BY DISCRETE CONTINUOUS PLANT

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2020 (September/October)
Pages 10 - 14

Authors
B.I. Kuznetsov1*, T.B. Nikitina2**, I.V. Bovdui1***
1 - Institute of Technical Problems of Magnetism National Academy of Sciences of Ukraine,
19, Industrialna st., Kharkiv, 61106, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 - Kharkov National Automobile and Highway University,
25, Yaroslava Mudroho st., Kharkiv, 61002, Ukraine

* ORCID ID : https://orcid.org/0000-0002-1100-095X
** ORCID ID : https://orcid.org/0000-0002-9826-1123
*** ORCID ID : https://orcid.org/0000-0003-3508-9781

Abstract

The method of accuracy improving and uncertain plant parameters sensitivity reducing based on multiobjective synthesis of two degree of freedom nonlinear robust control by discrete-continuous plant is developed. Synthesis of nonlinear robust regulators and nonlinear robust observers reduces to Hamilton-Jacobi-Isaacs equations solution. The robust control target vector is choiced by multicriterion nonlinear programming problem solution in which the objective function vectors is direct indexes performance vector that are presented to the system in various modes of its operation. The robust control target vector calculated by synthesized nonlinear robust control system modeling for various modes of system operation with different input signals and for various plant parameters values. The dynamic characteristics modeling end experimental researching results of a synthesized nonlinear electromechanical servo system for system operation various modes with different input signals and for plant parameters various values are given. References 8, figure 1.

Key words: discrete-continuous plant, nonlinear robust control, dynamic characteristics simulation and experimental researches.

Received: 15.02.2020
Accepted: 21.04.2020
Published: 25.08.2020

 

References
1. Binroth W. Closed-loop optimization program for the M60A1 tank gun stabilization system. Rock Island Arsenal, 1975. 251 p.
2. Kondratenko I.P., Zhyltsov A.V., Pashchyn N.A., Vasyuk V.V. Selecting induction type electromechanical converter for electrodynamic processing of welds. Tekhnichna elektrodynamika. 2017. No 5. Pp. 83-88. (Ukr) DOI: https://doi.org/10.15407/techned2017.05.083
3. Mazurenko L.I., Dzhura O.V., Romanenko V.I., Bilyk O.A. Numerical investigation of induction generators with two stator windings in welding complexes with pwm current regulators. Tekhnichna elektrodynamika. 2012. No 3. Pp. 83-84. (Ukr)
4. Peresada S., Kovbasa S., Korol S., Zhelinskyi N. Feedback linearizing field-oriented control of induction generator: theory and experiments. Tekhnichna elektrodynamika. 2017. No 2. Pp. 48-56. DOI: https://doi.org/10.15407/techned2017.02.048
5. Mituhiko Araki, Hidefumi Taguchi Two-Degree-of-Freedom PID Controllers. International Journal of Control, Automation and Systems. 2003. Vol. 1. No 4. Pp. 401-411.
6. William M. McEneaney Max-plus methods for nonlinear control and estimation. Birkhauser Boston Basel Berlin, 2006. 256 p.
7. Wilson J. Rugh Nonlinear system theory the Volterra. The Johns Hopkins University Press, 2002. 330 p.
8. Ummels M. Stochastic Multiplayer Games Theory and Algorithms. Amsterdam: Amsterdam University Press, 2010. 237 p. DOI: https://doi.org/10.5117/9789085550402

 

PDF

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.