PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.01.040

ROTOR STRUCTURE WITH DOUBLE CAGE FOR IMPROVED SYNCHRONOUS CAPABILITY OF LINE-START PERMANENT MAGNET SYNCHRONOUS MOTORS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 1, 2020 (January/February)
Pages 40 - 47

Authors
Hongbo Qiu, Yong Zhang, Cunxiang Yang, Ran Yi
School of Electrical and Information Engineering, Zhengzhou University of Light Industry,
Dongfeng Road No. 5, 450002, Zhengzhou, China,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Abstract

Line start permanent magnet synchronous motors (LSPMSMs) have a problem of synchronization. In this paper the rotor of LSPMSM with double cage is proposed to improve synchronous capability of the motor. Key factors concerning the starting performance and synchronous capability of LSPMSM are given, and the conflict relationship between starting performance and synchronous capability is analyzed. The performances of starting and synchronization of the motors with singe cage rotor and double cage rotor are compared and analyzed based on the conflict. The results obtained for the motor with double cage rotor can improve the synchronous capability within the wide range. The principal results of the paper provide the reliable theoretical propositions for improving LSPMSM performance. References 15, figures 11, tables 3.

Key words: LSPMSM, finite-element method, double cage rotor, starting performance, synchronous capability.

Received: 31.07.2019
Accepted: 27.11.2019
Published: 16.01.2020

 

Acknowledgement. This work was supported in part by the National Natural Science Foundation of China under Grant 51507156, in part by the University Key Scientific Research Programs of Henan province under Grant 17A470005, in part by the Key R & D and Promotion Projects of Henan Province under Grant 182102310033, in part by the Doctoral Program of Zhengzhou University of Light Industry under Grant 2014BSJJ042, and in part by the Foundation for Key Teacher of Zhengzhou University of Light Industry.

 

References
1. Lin C., Lin C., Hybrid modified Elman NN controller design on permanent magnet synchronous motor driven electric scooter. Transactions Of The Canadian Society For Mechanical Engineering. 2013. Vol. 37. No 4. Pp.1127-1145. DOI: https://doi.org/10.1139/tcsme-2013-0096
2. Rahman M.A., Osheiba A.M. Performance of a large line-start permanent magnet synchronous motor. IEEE Transactions on Energy Conversion. 1990. Pp. 211-217. DOI: https://doi.org/10.1109/60.50833.
3. Hassanpour Isfahani A., Vaez-Zadeh S. Effects of Magnetizing Inductance on Start-Up and Synchronization of Line-Start Permanent-Magnet Synchronous Motors. IEEE Transactions on Magnetics. 2011. Vol. 47. Pp. 823-829. DOI: https://doi.org/10.1109/TMAG.2010.2091651
4. Binns K.J., Jabbar M.A. High-field self-starting permanent magnet synchronous motor. IEE Proceedings B: Electric Power Applications. 1981. Vol. 128. Pp. 157-160. DOI: https://doi.org/10.1049/ip-b.1981.0021
5. Hassanpour Isfahani A., Vaez-Zadeh S. Line-start permanent magnet synchronous motors: Challenges and opportunities. Energy. 2009. Vol. 34. Pp. 1755-1763. DOI: https://doi.org/10.1016/j.energy.2009.04.022
6. Kahrisangi M.G., Isfahani A.H. Line-start permanent magnet synchronous motors versus induction motors: A comparative study. Frontiers of Electrical and Electronic Engineering. 2012. No 4. Pp. 459-466. DOI: https://doi.org/10.1007/s11460-012-0217-8
7. Esmaeil Sarani, Sadegh Vaez-Zadeh. Design procedure and optimal guidelines for overall enhancement of steady-state and transient performances of line start permanent magnet motors. IEEE Transactions on Energy Conversion. 2017. Vol. 32. No 3. Pp. 885-894. DOI: https://doi.org/10.1109/TEC.2017.2694485
8. Hassanpour Isfahani Arash, Vaez-Zadeh Sadegh. Effects of Magnetizing Inductance on Start-Up and Synchronization of Line-Start Permanent-Magnet Synchronous Motors. IEEE Transactions on Magnetics. 2011. Vol. 47. 823-829. DOI: https://doi.org/10.1109/TMAG.2010.2091651
9. Miller T.J.E. Synchronization of line-start permanent-magnet synchronous AC motors. IEEE Transactions on Power Apparatus and Systems PAS-103. 1984. Pp. 1822-1828. DOI: https://doi.org/10.1109/TPAS.1984.318630
10. Cheng M., Zhou E. Analysis and calculation of pull-in performance of the permanent magnet synchronous motors. Proceedings of the CSEE. 1996. Vol. 16. Pp. 130-134. DOI: https://doi.org/10.13334/j.025-2013.pcsee.1996.02.013
11. Esmaeil Sarani, Sadegh Vaez-Zadeh. Line start permanent magnet motors with double-barrier configuration for magnet conservation and performance improvement. IET Electric Power Applications. 2017. No 11. Pp. 1656-1663. DOI: https://doi.org/10.1049/iet-epa.2017.0086
12. Ding Tingting, Takorabet Noureddine, Sargos Francois-Michel, Wang Xiuhe. Design and Analysis of Different Line-Start PM Synchronous Motors for Oil-Pump Applications. IEEE Transactions on Magnetics. 2009. Vol. 45. Pp. 1816-1819. DOI: https://doi.org/10.1109/TMAG.2009.2012772
13. Wu X., Wang X. Calculation of skin effect for double-cage rotor bar of the induction machine. Proceedings of the CSEE. 2003. Vol. 23. Pp. 116-120. DOI: https://doi.org/10.1334/j.0258-8013.pcsee.2003.03.025
14. Jose Antonino-Daviu, Martin Riera-Guasp. Double-cage induction motors under the startup transient. IEEE Transactions on Industry Applications. 2012. Vol. 48. Pp1539-1548. DOI: https://doi.org/10.1109/TIA.2012.2210173
15. Ugale R.T., Chaudhari B.N. Rotor configurations for improved starting an synchronous capability of line start permanent magnet synchronous motor. IEEE Trans. Ind. Electron. 2017. Vol. 64. Pp. 138-148. DOI: https://doi.org/10.1109/TIE.2016.2606587

PDF

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.