PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.04.055


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 4, 2017 (July/August)
Pages 55 – 64


A.A. Shcherba1*, O.D. Podoltsev1, I.M. Kucheriava1, V.M. Zolotarev2, R.V. Bilianin2
1 – Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – PJSC Yuzhcable,
Avtogenna st., 7, Kharkіv, 61099, Ukraine
* ORCID ID : http://orcid.org/0000-0002-0200-369X



The paper presents multiphysics modeling of long-term (tens of hours) electromagnetic and thermal processes with different transient times that run in induction channel furnace used in the technology of copper wire rod production. The modeling is based on the coupled nonlinear equivalent electrical and thermal circuits, taking into account such factors as the dependence of the electrical conductivity and heat capacity of heated copper gauge on temperature, the phase transition at heating to a temperature above the melting point, the periodic injection of cold copper cathodes into the molten metal and the continuous casting of copper workpieces. As shown, the dynamic processes of heat- and mass- transfer in the furnace can be modeled by equivalent thermal circuit with nonlinear and commutated capacitances. The method is realized by Matlab/Simulink/SPS tools. The approach of artificial decrease of power supply frequency with simultaneous proportional increase of all inductances in the equivalent electrical circuit is proposed and implemented to reduce the computer time. The attained results of thermal computations give a possibility to define the rational technological conditions and parameters of the installation. References 12, figures 7.


Key words: induction channel furnace, electromagnetic processes, thermal processes, phase transition at melting of workpiece, multiphysics circuit, computer modeling.


Received:    14.03.2017
Accepted:    04.05.2017
Published:   15.06.2017



1. Vainberg A.M. Induction melting furnaces. Moskva: Energiia, 1967. – 416 p. (Rus)
2. Zolotarev V.M., Bilianin R.V., Podoltsev A.D. Analysis of electromagnetic processes in induction furnace. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2016. No 44. Pp. 110–115. (Rus)
3. Zolotarev V.M., Shcherba M.A., Zolotarev V.V,. Bilianin R.V. 3D Modeling of electromagnetic and thermal processes of copper template taking into account the design of the installation elements. Tekhnichna Elektrodynamika. 2017. No 3. Pp. 13–21. (Rus)
4. Podoltsev O.D., Kucheriava I.M. Multiphysics modeling in electrical engineering. Кyiv: Instytut Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy, 2015. – 305 p. (Rus)
5. Samarskii A.A., Moiseeenko V.D. Economic scheme of through calculation for multidimensional Stephan problems. Jurnal vychislitelnoi matematiki i matematicheskoi fiziki. 1965. Vol. 5. No 5. Pp. 816–827. (Rus)
6. Sipailov G.A. Thermal, hydraulic and aerodynamic calculations in electric machines. Moskva: Visshaia shkola, 1989. 239 p. (Rus)
7. Stolovich N.N., Minitskaia N.S. Temperature dependences of thermophysical properties of some metals. Minsk: Nauka i tekhnika, 1975. 160 p. (Rus)
8. Fomin N.I., Zatulovskii L.M. Electric furnaces and induction heating installations. Moskva: Metallurgiia, 1979. 247 p. (Rus)
9. Shcherba A.A., Podoltsev O.D., Kucheriava I.M., Ushakov V.I. Computer modeling of electrothermal processes and thermomechanical stress at induction heating of moving copper ingots. Tekhnichna Elektrodynamika. 2013. No 2. Pp. 10–18.
10. Comsol Multiphysics. – www.comsol.com.
11. Rantanen M. The 'UPCAST' method of producing copper wire. Wire industry. 1976. No 511. Pp. 565–567.
12. UPCAST Products –Available at: http://www.upcast.com/rus/upcast-products.html (Accessed 20.02.2017)