DOI: https://doi.org/10.15407/techned2020.02.050


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2020 (March/April)
Pages 50 - 55

A.D. Podoltsev1*, R.P. Bondar2**
1-Institute of Electrodynamics National Academy of Science of Ukraine,
Pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2-Kyiv National University of Construction and Architecture,
Povitroflotsky Ave., 31, Kyiv, 03037, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : https://orcid.org/0000-0002-9029-9397
** ORCID ID : https://orcid.org/0000-0002-0198-5548


The paper presents a computer multiphysics model that has been developed for calculating the related electrical, mechanical, and thermal processes in a linear permanent magnet motor for two-mass vibration system. The model is based on the theory of multiphysics circuits, in the framework of which for each of the indicated physical processes its own equivalent circuit is built, and all of them are combined into a single model that carries out the connection between all these circuits. According to the results of calculating the motor starting mode and reaching a stable thermal mode, it is shown that the transient thermal process for the motor lasts more than 2 hours of operation, and at the same time its most heated element – the winding, is heated to a temperature of more than 130° С. The application of the developed multiphysics model allows one to predict the electromechanical and thermal characteristics of the motor when using various cooling systems – natural cooling, forced cooling using air or liquid, both in transient and steady-state operation modes. References 8, figures 7.

Key words: electromechanical and thermal processes, linear permanent magnet motor, mechanical circuit, thermal circuit, two-mass vibration system.

Received: 06.12.2019
Accepted: 22.01.2020
Published: 26.02.2020


1. Goncharevich I.F. Vibrotechnics in mining. Moskwa: Nedra, 1992. 320 p. (Rus)
2. Bondar R.P. Research of the magnetoelectric linear oscillatory motor characteristics during the work on elastoviscous loading. Electrical engineering & electromechanics. 2019. No 1. Pp. 9-16. (Ukr) DOI: https://doi.org/10.20998/2074-272X.2019.1.02
3. Bondar R.P., Podoltsev A.D. Operating modes of a linear permanent magnet motor as an element of vibration system. Pratsi Instytutu elektrodynamiky Natsionalnoi akademii nauk Ukrainy. 2019. No 54. Pp. 52-62. (Ukr) DOI: https://doi.org/10.15407/publishing2019.54.052
4. Chau K.T, Wang Z. Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Sons (Asia) Pte Ltd, 2011. 318 p. DOI: http://dx.doi.org/10.1002/9780470826355
5. Podoltsev A.D., Kucheryavaya I.N. Multiphysics modeling in electrical engineering. Kyiv: Institute of electrodynamics National academy of sciences of Ukraine, 2015. 305 p. (Rus)
6. Patankar S.V. Numerical heat transfer and fluid flow. New York: Hemisphere Pub. Corp., 1980. 197 p.
7. Sipaylov G.A, Sannikov D.I, Zhadan V.A. Thermal, hydraulic and aerodynamic calculations in electric machines. Moskwa: Vysshaya shkola, 1989. 240 p. (Rus)
8. Hargreaves P.A., Mecrow B.C., Hall R. Calculation of iron loss in electrical generators using finite-element analysis. IEEE Transactions on Industry Applications. 2012. Vol. 48. No 5. Pp. 1460-1466. DOI: https://doi.org/10.1109/TIA.2012.2209851





Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.