Печать

DOI: https://doi.org/10.15407/techned2020.02.017

SIMULATION OF THE ELECTRIC FIELD IN THE ELECTRODE SYSTEM TO CREATE OF A PULSED BARRIER DISCHARGE IN ATMOSPHERIC AIR IN THE PRESENCE OF WATER IN A DROPLET-FILM STATE

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2020 (March/April)
Pages 17 - 22

Authors
V.O. Bereka1*, I.V. Bozhko1**, V.A. Brzhezitsky2***, Ya. Haran2****, Ye. A. Trotzenko2*****
1-Institute of Electrodynamics National Academy of Science of Ukraine,
Pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2-National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute",
Pr. Peremohy, 37, Kyiv, 03056, Ukraine,
* ORCID ID : https://orcid.org/0000-0003-0888-2864
** ORCID ID : https://orcid.org/0000-0002-7955-246X
*** ORCID ID : https://orcid.org/0000-0002-9768-7544
**** ORCID ID : https://orcid.org/0000-0003-3242-9218
***** ORCID ID : https://orcid.org/0000-0001-9379-0061

Abstract

By simulation, it was stated the distribution of the electric field strength and potential in electrode sstem for creation a pulsed barrier discharge in atmospheric air in the presence of water in it in a droplet-film state. The calculations were performed under the conditions that the duration of the pulse front is ≈40 ns, the width of the gas gap is 3.2 mm, the thickness of the water films on its walls is 0.15 mm and the diameter of the droplets is 0.5 - 1.5 mm. It is shown that the presence of water droplets dramatically changes the distribution of the field in the gap: from uniform it becomes sharply inhomogeneous. The maximum field strength is observed at points on the surface of the drop, which are located nearest to the walls of the gap. This field strength is ≈2.5 times higher than that characteristic of a uniform field in the absence of a drop. The effect of neighboring drops on the distribution of the electric field is also considered. It becomes significant (> 10%) when the distance between adjacent drops becomes less than ≈1.5 mm. References 8, figures 6.

Key words: pulsed barrier discharge, electric field strength, drop, water film, air.

Received: 02.01.2020
Accepted: 28.01.2020
Published: 26.02.2020

 

References
1. Vanraes P., Nikiforov A.Y., Leys Ch. Electrical Discharge in Water Treatment Technology for Micropollutant Decomposition. Chapter 15. InTech, 2016. Рр. 457-506. DOI: http://dx.doi.org/10.5772/61830
2. Bo Jiang, Jingtang Zheng, Shi Qiu, Qinhui Zhang, Zifeng Yan, Qingzhong Xue. Review on electrical discharge plasma technology for wastewater. Chemical Engineering Journal. 2014. No 236. Pp. 348-363. DOI: https://doi.org/10.1016/j.cej.2013.09.090
3. Shen Zhao, Chunjing Hao, Di Xu, Yiyong Wen, Jian Qiu, Kefu Liu. Effect of Electrical Parameters on Energy Field of Organic Pollutant Degradation in a Dielectric Barrier Discharge Reactor. IEEE Transactions on Plasma Science. 2017. Vol. 45. Issue 6. Pр. 1043-1050. DOI: https://doi.org/10.1109/TPS.2017.2691726
4. Dojchinovich B.P., Roglich G.M., Obradovich B.M., Kuraica M.M., Kostich M.M., Nesich J., Manojlovich D.D. Decolorization of Reactive Textile Dyes Using Water Falling Film Dielectric Barrier Discharge. Journal of Hazardous Materials. 2011. No 192. Рp. 763-771. DOI: https://doi.org/10.1016/j.jhazmat.2011.05.086
5. Bozhko I.V., Karlov O.M., Kondratenko I.P., Cherny D.V. Development of a Complex for the Treatment of Water by Impulse Barrier. Tekhnichna Electrodynamika. 2017. No 6. Pp. 80-86. DOI: https://doi.org/10.15407/techned2017.06.080 (Ukr)
6. Yavorovsky N.A., Kornev Ya.I., Preiss S.V., Peltzman S.S., Haskelberg M.B., Chen B.N. Active oxidizing particles in the water-air stream. News of the Tomsk Polytechnic Institute. 2006. Vol. 309. No 2. P.108-113. (Rus)
7. Schoenbach K.H., Joshi R.P., Stark R.H., Dobbs F.C., Beebe S.J. Bacterial Decontamination of Liquids with Pulsed Electric Fields. IEEE Transactionson Dielectrics and Electrical Insulation. 2000. Vol. 7. No 5. Рр. 637-645. DOI: https://doi.org/10.1109/94.879359
8. Kornev Ya.I., Isaev Yu.N., Ushakov V.Ya., Khaskelberg M.B., Yavorovskii N.A., Kolchanova V.A. Influence of the Distribution of Electric Fields in a Reactor of Electrodischarge Water Treatment on the Treatment Efficienty. Russian Physics Journal. 2004. Vol. 47. No 10. Рр. 1062-1070. DOI: https://doi.org/10.1007/s11182-005-0022-4

 

PDF

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.