Печать

DOI: https://doi.org/10.15407/techned2020.02.010

MAGNETOMETRIC CONVERTERS OF INFORMATION DEVICES CONTROL OF MOBILE OBJECTS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2020 (March/April)
Pages 10 - 16

Authors
Smirnyi M.F.*, Polivianchuk A.P.**
O.M. Beketov National University of Urban Economy in Kharkiv,
Marshal Bazhanov street, 17, Kharkiv, 61002, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : https://orcid.org/0000-0002-7083-5447
** ORCID ID : https://orcid.org/0000-0002-9966-1938

Abstract

Based on a two-dimensional potential problem, which is described by differential equations of the elliptical type, analytical expressions of orthogonal components of the tension of the outer magnetic field from the pole of the rod permanent magnet. These expressions are used as informative parameters when constructing magnetometric converters on the base of the bar permanent magnet and digital sensors of Hall. Presented a structural diagram and a diagram of the work of the proposed information device for the management of a moving object to determine the direction of the movement of one object relative to the other and the decrease in their mutual speed in the surroundings of the exact stop. References 12, figures 6.

Key words: magnetometric converter, permanent magnet, magnetic field tension, digital Hall sensor, of mobile object, exact stop.

Received: 25.11.2019
Accepted: 16.01.2020
Published: 26.02.2020

 

References
1. Binns K., Laurenson P. Analysis and calculation of the electric and magnetic fields. Moskva: Energiia, 1970. 376 p. (Rus)
2. Babic S. Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings. Progress in Electromagnetics Research C. 2008. Vol. 5. Pp. 71-82.
3. Ravaud R., Lemarquant G., Babic S., Lemarquand V., Akyel C. Cylindrical magnets and coils: fields, forces, and inductances. IEEE transactions on magnetic. 2010. Vol. 46. No 9. Pp. 3585-3590. DOI: https://doi.org/10.1109/TMAG.2010.2049026
4. Zaporozhets Yu.M. Qualitative analysis of characteristics of direct permanent magnets in magnetic systems with clearance. Tekhnicheskaia Elektrodinamika. 1980. No 3. Pp. 19-24. (Rus)
5. Zaporozhets Yu.M., Kondratenko Yu.P., Shishkin O.S. Three-dimensional model for calculating magnetic induction in magnetsensitive system sensor slip. Tekhnichna Elektrodynamika. 2008. No 5. Pp. 76-79. (Ukr)
6. Cherkasova O.A. Study of magnetic field of permanent magnet by using computer simulation. Geteromagnitnaia mikroelektronika. 2014. No 17. Pp. 112-120. (Rus)
7. Boule O.B. Methods for calculating magnetic systems electrical apparatus. ANSYS program: training manual for Stud. of higher educational institutions. Moskva: Akademiia. 2006. 288 p. (Rus)
8. Karashetskyi V.P. Calculation of three-dimensional potential magnetic fields by the finite element method. Naukovyi visnyk Natsionalnoho Lisotekhnichnoho universytetu Ukrainy. 2013. Vol. 23.12. Pp. 379-381. (Ukr)
9. Chatskis L.H. Study of static fields. Electrichestvo. 1973. No. 2. Pp. 47-50. (Rus)
10. Smyrnyi M.F. Device for the exact stopping of the vehicle. Patent Ukraine No 68793, 2012. (Ukr)
11. Smyrnyi M.F. Device for finding the center of a magnetic tag. Patent Ukraine No 76193, 2012. (Ukr)
12. Smyrnyi M.F. Device for the exact stopping of the vehicle, Patent Ukraine No 78227, 2013. (Ukr)

 

PDF

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.