DOI: https://doi.org/10.15407/techned2016.06.054

AN INFLUENCE OF DIGITAL FILTERING OF SIGNALS AT ANALYSIS RESULTS OF LOW-FREQUENCY ELECTROMECHANICAL OSCILLATIONS IN INTERCONNECTED POWER SYSTEMS

Journal Tekhnichna elektrodynamika

Publisher Institute of Electrodynamics National Academy of Science of Ukraine

ISSN 1607-7970 (print), 2218-1903 (online) Issue № 6, 2016 (November/December)

Pages 54 – 59

Authors

O.F. Butkevych^{1,2}, V.V. Chyzhevskyi²

¹ – Institute of Electrodynamics National Academy of Science of Ukraine,

pr. Peremohy, 56, Kyiv-57, 03680, Ukraine,

e-mail: butkevych@ied.org.ua

² - National Technical University of Ukraine "Kyiv Polytechnic Institute",

pr. Peremohy, 37, Kyiv, 03056, Ukraine

Abstract

This article presents some results of studies on the influence of digital signal filtering at the analysis results of low-frequency electromechanical oscillations in interconnected power systems. Selected and prepared methods of signal analysis are used to analyse in real-time the signals measured by phasor measurement units. It is shown that preliminary digital filtering of signals improves the reliability of mentioned analysis results. References 11, figure 1, tables 2.

Key words: Interconnected power system, low-frequency electromechanical oscillations, mode, methods of signal analysis, digital filtering of signals.

Received: 05.08.2016 Accepted: 01.09.2016 Published: 27.10.2016

References

- 1. Butkevych O.F., Chyzhevskyi V.V. Some problems of integrated system construction for prevention of interconnected power system's oscillatory instability. *Power engineering: economics, technique, ecology*
- . 2015. No 3 (41). P. 28-36. (Ukr)
- 2. Butkevych Ö.F., Chyzhevskyi V.V. Evaluation and decrease in real time of risk of oscillatory loss of Interconnected Power System stability. *Tekhnichna Elektrodynamika*. 2015. No 6. P. 46-52. (Ukr)
- 3. Rabiner L., Gould B. Theory and application of digital signal processing. Moskva: Mir, 1978. 848 p. (Rus)
- 4. Sergienko A.B. Digital signal processing. St. Petersburg: Piter. 2011. 758 p. (Rus)
- 5. Electric Power Engineering Handbook, 2nd edition. The Power System Stability and Control. Boca Raton, London, New York: Taylor & Francis Group, LLC, 2006. 352 p.
- 6. Lauria D., Pisani C. On Hilbert transform methods for low frequency oscillations detection. *IE T Generation, Transmission & Distribution*
- . 2014. Vol. 8. Iss. 6. P. 1061–1074. DOI: https://doi.org/10.1049/iet-gtd.2013.0545
- 7. Patil V.S., Jambhulkar P.P., Kamble V.P. Real-time Identification of Electromechanical Modes using Controlled Window-size Multi-Prony Analysis. *International Journal of Engineering Research & Technology.* 2014. Vol.

- 3. Iss. 4. P. 1627–1634.
- 8. Power Systems Dynamics Tutorial. Final Report (1016042), July 2009. Electric Power Research Institute. USA. 2009. 1010 p.
- 9. Shofiqul I., Shahnaz C., Hoque Z. Spectral Analysis of Synthetic Power Signals of Different Regions Using Parametric Methods and Spectrogram Representations.

 IOSR Journal of Electrical and Electronics Engineering
- . 2014. Vol. 9. Iss. 5. Ver. II. P. 28-39.
- 10. Vanfretti L. Estimation of Electromechanical Modes in Power Systems using Synchronized Phasor Measurements and Applications for Control of Inter-Area Oscillations. / CIGRE WG B5-14 Wide Area Protection and Control Technologies. 4 August, 2013. 32 p.
- 11. Wang H., Su X. Generation Unit Correlativity-Based Prony Analysis on Multi-Signal Classification of Low-Frequency Oscillation. *Power System Technology*. 2011. Vol. 35. No 6. P. 128–133.

PDF