Печать


DOI: https://doi.org/10.15407/techned2016.03.012

ELECTRIC FIELD DISTRIBUTION IN MEDIUM-VOLTAGE XLPE CABLE TERMINATION TAKING INTO ACCOUNT OUTER SEMICONDUCTING LAYER

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 3, 2016 (May/June)
Pages 12 – 17

 

Author
Kucheriava I.M.
Institute of Electrodynamics National Academy of Science of Ukraine,
Pr. Peremogy, 56, Kyiv-57, 03680, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

The computer modeling of electric field in the termination of medium-voltage (10 kV) cross-linked polyethylene insulated power cable is carried out. The stress-control tube and mastic are used in the termination to reduce the field nonuniformity. The electric field distributions are examined at different stress control tube positions relative to the cutting ends of the cable outer semiconducting layer and copper wire shield. The properties of stress control tube and mastic are varied to determine their influence on maximum electric intensity in the cable insulation. The results and used approaches to the study of electric field can be applied to design the terminations allowing for the appropriate materials and arrangement of structural parts. References 11, figures 5, table 1.

 

Key words: cable termination, power cable, polyethylene insulation, outer semiconducting layer, field grading tube, stress control mastic, computer modeling.

 

Received:    12.01.2016
Accepted:     01.02.2016
Published:   25.04.2016

 

References

1. "Progress" cable terminations. Advanced designs for cable networks. Kabel-news.  2009.  No 11.  P. 34–36. (Rus)
2. Kotov R.V. Electric field distribution in cold-shrinkable cable terminations. Elektro.  2006.  No 5.  P. 40–44.  Available at: http://www.elektro-journal.ru/archive/articles/556412394 (accessed 12 January 2016). (Rus)
3. Kucheriava I.M. Computer study of the ways for electric field grading in sealing ends of polyethylene insulated cables. Tekhnichna Elektrodynamika.  2016.  No 2.  P. 19–24. (Rus)
4. Makarov Е.F. The handbook on 0.4–35 kV and 110–1150 kV power networks.  Vol. 3.  Moskva: Papirus-Pro, 2004.  688 p. (Rus)
5. Medium- and high-voltage power cables with cross-linked polyethylene insulation.  PJSC Zavod "Yuzhkabel".  Kharkov, Ukraine.  56 p.  Available at: http://www.elektal.com.ua/upload/iblock/218/silovye_kabeli_s_izolyatsiey_iz_sshitogo_polietilena.pdf (accessed 12 January 2016). (Rus)
6. Chen C., Liu G., Lu G., Jin W. Influence of cable terminal stress cone install incorrectly. Proc. of IEEE 9-th Internat. Conference on the Properties and Applications of Dielectric Materials, ICPADM 2009.  19–23 July 2009.  P. 63–65. DOI:  https://doi.org/10.1109/ICPADM.2009.5252506
7. Comsol multiphysics modeling and simulation software.  http://www.comsol.com/ (accessed 12 January 2016).
8. Li N., Deng G., Kong B. Defect morphological characteristic of cold-shrinkable cable terminal and its partial discharge analysis based on finite element method. Internat. Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering.  2014.  Vol. 3.  Is. 1.  8 p. http://www.ijareeie.com/upload/2014/january/1A_Defect.pdf (accessed 12 January 2016).
9. Olsson C.О. Modelling of thermal behaviour of polymer insulation at high electric dc field. Proc. of the 5-th European Thermal-Sciences Conference.  The Netherlands, 18–22 May, 2008.  8 p.  http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.491.3890&rep=rep1&type=pdf (accessed 12 January 2016).
10. Strobl R., Haverkamp W., Malin G., Fitzgerald F. Evolution of stress control systems in medium voltage cable accessories. Proc. of Transmission and Distribution Conference and Exposition, IEEE/PES.  2001.  Vol. 2.  P. 843–848. DOI: https://doi.org/10.1109/TDC.2001.971348
11. Väkeväinen K. The effect of material properties to electric field distribution in medium voltage underground cable accessories. Thesis on Electrical Engineering.  2010.  84 p.  https://www.theseus.fi/bitstream/handle/10024/21358/Vakevainen_Kenneth.pdf?sequence=1 (accessed 12 January 2016).

 

PDF