PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2016.02.078

ELECTROMAGNETIC ACOUSTIC TRANSDUCER FOR ULTRASONIC THICKNESS GAUGING OF FERROMAGNETIC METAL ITEMS WITHOUT REMOVING DIELECTRIC COATING

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 2, 2016 (March/April)
Pages 78 – 82

 

Authors
R.P. Migushchenko1, G.M. Suchkov1, Kh.K. Radev2, O.M. Petrishchev3, O.V. Desyatnichenko1
1 – National Technical University ‘Kharkiv Polytechnic Institute’,
21, Frunze str., Kharkiv, 61002, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – Technical University of Sofia,
1000, 8 Kl. Ohridski Blvd, Sofia, 1797, Bulgaria
3 – National Technical University of Ukraine ‘Kyiv Polytechnic Institute’,
37, Prospect Peremohy, Kyiv, 03056, Ukraine

A combined high-performance electromagnetic acoustic gauge for transforming electrical power into acoustic power and vice versa has been developed. It is designed to excite and accept ultrasonic high-frequency pulses in metallic items by using magnetic and electromagnetic fields in the presence of dielectric coatings with thickness up to 10 mm. Without changing the design this transducer can be used for checking items with flat or curved surfaces. At this only thickness of metal is measured. The new transducer allows significantly reduce cost of ultrasonic check by means of excluding operations for removal of protecting coating and its further renewal. The solution can be used for diagnostic operations in field of power engineering, metallurgy, transportation and other areas in which metal items with/without coatings are used. References 7, figures 5.

 

Key words: ultrasonic diagnosis, electromagnetic acoustic transducer, dielectric coating, thickness gauging.

 

Received:    15.12.2015
Accepted:    04.02.2016
Published:  18.03.2016

 

References

1. Vasenev Yu.G., Stupachenko S.G. Methods improve the monitoring gas and oil pipelines using the technical capabilities of defectoscopes SONATEST. Kontrol. Diagnostika.  2009.  No 5.  P. 50–54. (Rus)
2. Ermolov I.N., Lange Ju.V. Nondestructive testing. Vol. 3.  Moskva: Mashinostroenie, 2004.  864 p. (Rus)
3. Izymov N.M., Linde D.P. Fundamentals of radio engineering.  Moskva: Radio i sviaz.  1983.  376 p. (Rus)
4. Sudakova K.V., Kazjukevich I.L. On increasing the effectiveness of the quality control of steel products. V mire nerazrushaiushchego kontrolia. 2004.  Vol. 3.  P. 8–10. (Rus)
5. Suchkov G.M., Petrishchev O.N., Homyak Yu.V. Theory and practice of electromagnetic-acoustic control. Part 3.  Kharkiv: Shchedra sadyba plius, 2015.  124 p. (Rus)
6. Maeda M., Hirasawa H., Yoshikava T. The effects of film thickness on the reflection echo height of ultrasonic testing. J. Jap. Soc. Nondestructive Inspection.  2012.  Vol. 61.  No 9.  P. 480–487.
7. Suchkov G.M., Petrishchev O.N., Cherednichenko I.V., Fedorov V.V., Desyatnichenko A.V., Khashchina S.V., Maslova M.S. Generator of Probing Pulses for EMA Flaw Detectors. Russian Journal of Nondestructive Testing.  2012.  Vol. 48.  No 9.  P. 537–540. DOI: https://doi.org/10.1134/S1061830912090082

 

PDF