PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2016.01.003

DEPENDENCES OF POWER CHARACTERISTICS OF CIRCUIT AT CHARGE OF SUPERCAPACITORS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 1, 2016 (January/February)
Pages 3 – 10

 

Authors
O.A. Beletsky1, N.I. Suprunovska2*, A.A. Shcherba2**
1 – National Technical University of Ukraine "Kyiv Polytechnic Institute",
pr. Peremohy, 37, Kyiv, 03056, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – Institute of Electrodynamics National Academy of Science of Ukraine,
pr. Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
*ID http://orcid.org/0000-0001-7499-9142
**ID href="http://orcid.org/0000-0002-0200-369X">

Abstract

Available dependences of power characteristics of charge circuits of supercapacitors (charge of which is nonlinear function of voltage on their terminals) on ideal source EMF, which for capacitive storages can be the accumulator battery are defined in this work. Comparison of power characteristics of charge circuits of supercapacitors and usual capacitors is executed. Conditions of decrease of electric power losses in charge circuits of nonlinear and linear capacitors from the accumulator battery are defined. Features of influence of energy of initial and final voltages of capacitors and their capacities on such losses are determined. References 15, figures 3, tables 4.

 

Key words: transient process, capacity, charge, supercapacitor, nonlinearity, internal resistance, accumulator battery, electric power losses.

 

Received:    17.08.2015
Accepted:    03.09.2015
Published:   29.01.2016

 

References

1. Bessonov L.A. Theory of electrical engineering.  Moskva: Vysshaіa shkola, 1973.  733 p. (Rus)
2. Izotov V.Yu., Gromadsky D.G., Maletin Yu.A. Simulation and calculation of the operating parameters of the supercapacitor.  Naukovi Visti NTUU "KPI".  2008.  No 6.  P. 114–118. (Rus)
3. Shcherba A.A., Suprunovska N.I. Synthesis of electrical circuits with capacitive energy storages in semiconductor formers of power discharge pulses. Tekhnichna Elektrodynamika.  2014.  No 1.  P. 3–11. (Rus)
4. Shcherba A.A., Suprunovskaya N.I., Ivashchenko D.S., Beletsky O.A. Processes of energy exchange between nonlinear and linear links of electric equivalent circuit of supercapacitors. Tekhnichna Elektrodynamika.  2015.  No 5.  P. 3–11. (Rus)
5. Shcherba A.A., Ivashchenko D.S., Suprunovska N.I. Development of difference equations method for analysis of transient processes in the circuits of electro-discharge systems at stochastic changing of load resistance. Tekhnichna Elektrodynamika.  2013.  No 3.  P. 3–11. (Rus)
6. Burke A. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc. of the IEEE. 2007.  Vol. 95.  No 4.  Р. 806–820.
7. Burke A., Miller M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications.  Journ. of the Power Sources.  2011.  Vol. 196.  Issue 1.  Р. 514–522.
8. Burke A., Miller M., Zhao H. Ultracapacitors in Hybrid Vehicle Applications: Testing of New High Power Devices and Prospects for Increased Energy Density. Research Report – UCD-ITS-RR-12-06.  Institute of Transportation Studies. University of California, May 2012.
9. Kurzwell P., Frenzel B. Capacitance characterization metods and ageing behaviour of supercapacitors. Proc. the 15th International seminar on double layer capacitors.  Deerfield Beach, Fl., U.S.A., December 5-7, 2005.
10. Maletin Y., Stryzhakova N., Zelinskyi S., Chernukhin S., Tretyakov D., Mosqueda H., Davydenko N., and Drobnyi D. New Approach to Ultracapacitor Technology: What it Can Offer to Electrified Vehicles. Journ. of Energy and Power Engineering.  2015.  No 9.  P. 585–591.
11. Mihailescu B., Svasta P.,Varzaru G. Hybrid Supercapacitor-Battery electric system with low electromagnetic emissions for automotive applications. U.P.B. Scientific Bulletin, Series C.  2013.  Vol. 75.  Iss. 2.  Рр. 277–290.
12. Rafik F., Gualous H., Gallay R., Crausaz A., and Berthon A. Frequency, thermal and voltage supercapacitor characterization and modeling. Journal of Power Sources. 2007. Vol. 165.  No 2.  Р. 928–934.
13. Monastyrsky G.E., Yakovenko P.A., Kolomytzev V.I., Koval Yu.N., Shcherba A.A., Portier R. Characterization of spark-eroded shape memory alloy powders obtained in cryogenic licquids. Materials Science and Engineering A.  2008.  Vol. 481–482.  Iss. 1–2.  P. 643–646.
14. Shcherba A.A., Suprunovska N.I. Study features оf transients in the circuits of semiconductor discharge pulses generators with nonlinear electro-Spark load. Proc. of the IEEE International Conference on Intelligent Energy and Power Systems (IEPS), 2014, Kyiv, Ukraine.  P. 50–54.
15. Zubieta L., Bonert R. Characterization of Double-Layer Capacitors for Power Electronics Applications. IEEE Trans. On Industry Applications.  2000.  Vol. 36.  No 1.  Рр. 199–205.

 

PDF