PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.04.080


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 4, 2020 (July/August)
Pages 80 - 88

Song Wenguang1*, Andrushchak V.S.2**, Kaidan M.V.2***, Beshley M.I.2****, Kochan O.V.1,2*****, Su Jun3******

1School of Computer Science, Yangtze University,

Jingzhou, 434023, China,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

2- Lviv Polytechnic National University,
Str. Stepana Bandera, 12, Lviv, 79013, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
3School of Computer Science, Hubei University of Technology, Wuhan, China

ORCID ID : https://orcid.org/0000-0003-1002-6709
** ORCID ID : https://orcid.org/0000-0002-2185-0923
*** ORCID ID : https://orcid.org/0000-0002-9942-0229
**** ORCID ID : https://orcid.org/0000-0002-7122-2319
***** ORCID ID : https://orcid.org/0000-0002-3164-3821
****** ORCID ID : https://orcid.org/0000-0002-4290-5049


The methodology for calculating the complex parameter of energy consumption for info-communication networks is proposed. Unlike the known methodologies, the proposed technique takes into account heterogeneity and multilayered network. It also takes into account the parameter of power consumption during the downtime of network equipment in the process of processing of service data blocks, which is quite an important task to improve the accuracy of energy consumption at the stage of implementing an energy-efficient network. According to this method, the energy consumption can be calculated for any network architecture and configuration, network devices configuration and equipment from different manufacturers. References 24, figure 4.

Key words: power consumption, info-communication network, DWDM, electrooptics, acoustics, switch, modulator.

Received: 05.12.2019
Accepted: 29.04.2020
Published: 26.06.2020


1. Grandelag P. Energy-efficient cooling for telecom networks: Thermosiphon as energy savings generator. IEEE International Telecommunications Energy Conference (INTELEC). Osaka, 2015. Pp. 1-3. DOI: https://doi.org/10.1109/INTLEC.2015.7572486
2. Kahalo I., Beshley H., Beshley M., Panchenko O. Enhancing QoS and Energy Efficiency of LTE/LTE-U/Wi-Fi Integrated Network Based on Adaptive Technique for Radio Structure Formation. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). Lviv, Ukraine, 2019. Pp. 1167-1170. DOI: https://doi.org/10.1109/UKRCON.2019.8879923
3. Elmirghani J. M. H., Klein T., Hinton K., Nonde L, Lawey A. Q., El-Gorashi T. E. H., Musa M. O. I., X. Don . GreenTouch GreenMeter core network energy-efficiency improvement measures and optimization. In IEEE/OSA Journal of Optical Communications and Networking. 2018. Vol. 10. No 2. Pp. A250-A269. DOI: https://doi.org/10.1364/JOCN.10.00A250
4. Hadi M., Pakravan M. R. Energy-efficient fast configuration of flexible transponders and grooming switches in OFDM-based elastic optical networks. in IEEE/OSA Journal of Optical Communications and Networking. 2018. Vol. 10. No 2. Pp. 90-103. DOI: https://doi.org/10.1364/JOCN.10.000090
5. Musa M., Elgorashi T., Elmirghani J. Bounds for energy-efficient survivable IP over WDM networks with network codin. in IEEE/OSA Journal of Optical Communications and Networking. 2018. Vol. 10. No 5. Pp. 471-481. DOI: https://doi.org/10.1364/JOCN.10.000471
6. Klymash M., Beshley H., Seliuchenko M., Beshley M. Algorithm for clusterization, aggregation and prioritization of M2M devices in heterogeneous 4G/5G network. 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 2017. Pp. 182-186. DOI: https://doi.org/10.1109/INFOCOMMST.2017.8246376
7. Romanchuk V., Beshley M., Panchenko O., Arthur P. Design of software router with a modular structure and automatic deployment at virtual nodes. 2nd International Conference on Advanced Information and Communication Technologies (AICT). Lviv, Ukraine, 2017. Pp. 295-298. DOI: https://doi.org/10.1109/AIACT.2017.8020123
8. Zong Y., Ou Y., Hammad A., Kondepu K., Nejabati R., Simeonidou D., Liu Y., Guo L. Location-aware energy efficient virtual network embedding in software-defined optical data center networks. in IEEE/OSA Journal of Optical Communications and Networking. 2018. Vol. 10. No 7. Pp. 58-70. DOI: https://doi.org/10.1364/JOCN.10.000B58
9. Yeromenko V., Kochan O. The conditional least squares method for thermocouples error modeling. IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). Berlin, Germany, 2013. Pp. 157-162. DOI: https://doi.org/10.1109/IDAACS.2013.6662661
10. Memon A. K., Khan A. M., Musavi S. H. A., Kumar G., Memon A. L. 40Gbps DQPSK transmission system for high data rate energy efficient Next Generation Passive Optical Network (NGPON). International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT). Karachi, Pakistan, 2017. Pp. 1-8. DOI: https://doi.org/10.1109/ICIEECT.2017.7916554
11. Musumeci F., Hmaity A., Tornatore M., Pattavina A. Energy efficiency in reliable optical core networks. IEEE Online Conference on Green Communications (OnlineGreenComm). Piscataway, USA, 2015. Pp. 1-6. DOI: https://doi.org/10.1109/OnlineGreenCom.2015.7387370
12. Su J., Kochan O. Common mode noise rejection in measuring channels. Instruments and Experimental Techniques. 2015, Vol. 58. No 1. Pp. 86-89. DOI: https://doi.org/10.1134/S0020441215010091
13. Ji Y., Zhang J.; Zhao Y., Li H., Yang Q., Ge C.Xiong Q., Xue D., Yu J., Qiu S. All Optical Switching Networks With Energy-Efficient Technologies From Components Level to Network Level. in IEEE Journal on Selected Areas in Communications. 2014. Vol. 32. No 8. Pp. 1600-1614. DOI: https://doi.org/10.1109/JSAC.2014.2335352
14. Tucker R., Hinton K., Ayre R. Energy efficiency in cloud computing and optical networking. 38th European Conference and Exhibition on Optical Communications. Amsterdam, Holland, 2012. Pp. 1-32. DOI: https://doi.org/10.1364/ECEOC.2012.Th.1.G.1
15. Musumeci F., Vismara F., Grkovic V., Tornatore M., Pattavina A. On the Energy Efficiency of Optical Transport with Time Driven Switching. IEEE international Conference on Communication. Kyoto, Japan, 2011. Pp. 1-5. DOI: https://doi.org/10.1109/icc.2011.5962484
16. Kaidan M., Andrushchak V., Pitsyk M. Calculation Model of Energy Efficiency in Optical Transport Networks. Second International Scientific-Practical Conference Problems of Infocommunications Science and Technology. Kharkiv, 2015. Pp. 167-170. DOI: https://doi.org/10.1109/INFOCOMMST.2015.7357303
17. Tesik Yu.F., Karasinskii O.L., Moroz R.N. Computer simulation of high-voltage DAC. Tekhnichna Elektrodynamika. 2019. No 1. Pp. 85-88. (Ukr). DOI: https://doi.org/10.15407/techned2019.01.085
18. Hertsyk S.M., Gorodzha A.D., Myslovych M.V., Podoltsev O.D., Sysak R.M., Troshchynskyi B.O. Models of wave processes in objects of limited form and their use for diagnostics of electrotechnical equipment. Tekhnichna Elektrodynamika. 2018. No 2. Pp. 86-94. (Ukr). DOI: https://doi.org/10.15407/techned2018.02.086
19. Chabarek J., Sommers J., Barford P., Estan C., Tsiang D., Wright S. Power Awareness in Network Design and Routing. The 27th Conference on Computer Communications. Phoenix, 2008. Pp. 457-465. DOI: https://doi.org/10.1109/INFOCOM.2008.93
20. Nhat V. V. M., Quoc N. H. A model of adaptive grouping scheduling in OBS core nodes. Journal of Convergence. 2014. Vol. 5. No 1. Pp. 9–13.
21. Lopatina P.S., Krishtop V.V. Electro-optical modulator for fiber-optic communication lines. Izvestiia VUZov. Priborostroenie. 2009. Vol. 52. No 12. Pp. 67-71. (Rus).
22. Andrushchak A.S., Mytsyk B.G., Demyanyshyn N.M., Kaidan M.V., Yurkevych O.V., Dumych S.S., Kityk A.V., Schranz W. Spatial anisotropy of linear electro-optic effect in crystal materials: II. Indicative surfaces as efficient tool for electro-optic coupling optimization in LiNbO3. Optics & Lasers in Engineering. 2009. Vo. 47. No 1. Pp.24-30. DOI: https://doi.org/10.1016/j.optlaseng.2008.08.007
23. Fedelesh V.I., Stegura M.M., Yurkin I.M., Babidorich P.P. Acousto-optical modulators and deflectors based on the chalcogenide glasses (As2S3)1-xHg(Ge)x. Naukovyi visnyk Uzhhorodskoho universytetu. Seriia Pfizika. 2009. No 26. Pp. 157-166. (Ukr).
24. Bondarenko V.S., Zorenko V.P., Chkalova V.V. Acousto-optical light modulators. Moskva: Radio i sviaz, 1988. 136 p. (Rus)





Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.