PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.04.035

FORMATION OF DYNAMIC MODES OF FULL-CONTROLLED HYBRID ENERGY STORAGE SYSTEM FOR ELECTRIC VEHICLES

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 4, 2020 (July/August)
Pages 35 - 40

Authors
S. Peresada*, Ye. Nikonenko**, M. Zhelinskyi***, V. Reshetnyk****
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Peremohy ave., 37, 03056, Kyiv, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : https://orcid.org/0000-0001-8948-722X
** ORCID ID : https://orcid.org/0000-0003-2379-5566
*** ORCID ID : https://orcid.org/0000-0003-4862-1802
**** ORCID ID : https://orcid.org/0000-0002-8428-0446

Abstract

In this paper, the results of the experimental investigations of the dynamic modes of the hybrid energy storage system for electric vehicles are shown which is based on the batteries and supercapacitors. The recommendations on the formation of dynamical modes are presented. The load current is formed based on diagrams of the motor torque and speed which correspond to the movement of a typical electric vehicle. It is experimentally shown that hybrid energy storage systems with a fixed configuration of the decoupling filter improve the batteries operation conditions, comparing with the battery-only source, but cannot guarantee effective currents distribution for all dynamic modes of an electric vehicle. References 10, figures 4.

Key words: hybrid energy storage system, electric vehicle, distribution filter, dynamic modes forming.

Received: 28.02.2020
Accepted: 14.04.2020
Published: 26.06.2020

 

References

1. Hemmati R., Saboori, H. Emergence of hybrid energy storage systems in renewable energy and transport applications. Renewable and Sustainable Energy Reviews. 2016. Vol. 65. Pp. 11-23. DOI: https://doi.org/10.1016/j.rser.2016.06.029
2. Peresada S., Nikonenko Y., Kovbasa S., Kuznietsov A., Pushnitsyn D. Rapid prototyping station for batteries-supercapacitors hybrid energy storage systems. IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO-2019). Ukraine. Kyiv. April, 16-18. 2019. Pp. 826-831. DOI: https://doi.org/10.1109/ELNANO.2019.8783731
3. Zhang C., Min H., Yu Y., Wang D., Luke J., Opila D., Saxena S. Using CPE function to size capacitor storage for electric vehicles and quantifying battery degradation during different driving cycles. Energies. 2016. Vol. 9. Pp. 1-23. DOI: https://doi.org/10.3390/en9110903
4. Kollimalla S. K., Mishra M. K., Ukil A., Gooi H. B. DC grid voltage regulation using new HESS control strategy. IEEE Transactions on Sustainable Energy. April, 2017. Vol. 8. No 2. Pp. 772-781. DOI: https://doi.org/10.1109/TSTE.2016.2619759
5. Peresada S., Kovbasa S., Pristupa D., Pushnitsyn D., Nikonenko Y. Nonlinear control of voltage source AC-DC and DC-DC boost converters. Visnyk Natsionalnoho tekhnichnoho universiteta Kharkivskii politekhnichnyi instytut. Problemy avtomatyzovanoho elektropryvodu. Teoriia ta praktyka. Sylova elektronika ta energoefektyvnist. Kharkiv. 2017. No 27. Pp. 84-88. (Rus) DOI: https://doi.org/10.1109/UKRCON.2017.8100532
6. Peresada S., Kovbasa S., Nikonenko Y., Bozhko S. Concept of experimental research for electrical vehicle electromechanical systems with hybrid energy storages. Tekhnichna Elektrodynamika. 2018. No 5. Pp. 57-60. (Ukr) DOI: https://doi.org/10.15407/techned2018.05.057
7. Zhang S., Xiong R., Zhou X. Comparison of the topologies for a hybrid energy-storage system of electric vehicles via a novel optimization method. Sci. China Technological Sci. 2015. Vol. 58. No 7. Pp. 1173-1185. DOI: https://doi.org/10.1007/s11431-015-5843-y
8. Akar F., Tavlasoglu Y., Vural B. An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life. IEEE Transactions on Transportation Electrification. 2017. Vol. 3. No 1. Pp. 191-200. DOI: https://doi.org/10.1109/TTE.2016.2638640
9. Tremblay O. Experimental validation of a battery dynamic model for EV applications. World Electric Vehicle Journal. May, 2009. Vol. 3. Pp. 289-298. DOI: https://doi.org/10.3390/wevj3020289
10. Keil P., Jossen A. Impact of dynamic driving loads and regenerative braking on the aging of lithium-ion batteries in electric vehicles. Journal of the electrochemical society. 2017. Vol. 164. No 13. Pp. A3081-A3092. DOI: https://doi.org/10.1149/2.0801713jes

 

PDF

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.