PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2019.05.017

UNIFORM OF PULSE BARRIER DISCHARGE IN THE AIR OF ATMOSPHERIC PRESSURE IN THE PRESENCE OF WATER IN A DROP-FILM CONDITION

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2019 (September/Oktober)
Pages 17 – 20

 

Authors
I.V. Bozhko*, V.O. Bereka**
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-7955-246X
** ORCID ID : http://orcid.org/0000-0003-0888-2864

Abstract

It was shown the possibility of creating in atmospheric air in a plane-parallel gap in the presence of water with a drop-film state of a uniform pulsed barrier discharge, which was initiated by unipolar voltage pulses of amplitudes up to 28 kV and fronts ≈ 40 ns and duration about 100ns. Studies were carried out at thicknesses: the dielectric barrier is 2 mm and the gas gap 3 mm. The characteristic dimensions of tap water drops were 1 mm and its films on the walls of the gas gap ~ 0.1 mm. For these conditions, the following amplitude discharge parameters were achieved: the electric field strength in the gas gap was about 60 kV/ cm, the current density –2.6 A/cm2, the electron concentration – 8.5·1011 cm-3 with their average energy – 3,7 eB. The discharge becomes non-uniform: zones with bright filamentary formations appear in the gas gap when increasing of the frequency of repetition of voltage pulses over ≈ 300 Hz,. The limiting frequency of the discharge transition into an inhomogeneous form becomes significantly higher (more than 500 Hz) with transverse purging of the gas gap with air, the speed of which at the entrance to the electrode system is ≈ 0.6 m/s. References 12, figures 7.

Key words: uniform and non-uniform pulsed barrier discharge, air, atmospheric pressure, drops and a film of water.

Received: 26.03.2019
Accepted: 23.04.2019
Published: 01.08.2019

 

References
1. Ulrich Kogelschatz. Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing. 2003. Vol. 23. Issue 1. Pp. 1–46. DOI: https://doi.org/10.1023/A:1022470901385
2. Samoilovich V.G., Gibalov V.I., Kozlov K.V. Physical chemistry of the barrier discharge. Moskva: Moskovskii Gosudarstvennyi Universitet, 1989. 175 p. (Rus)
3. Golubovskii Yu.B., Maiorov V.A., Behnke J.F., Tepper J., Lindmayer M. Study of the homogeneous glow-like discharge in nitrogen at atmospheric pressure. Journal of Physics D: Applied Physics. 2004. Vol. 37. Pp. 1346–1356.
4. Walsh J.L., Konga M.G. 10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces. Applied Physics Letters. 2007. Vol. 91. Pp. 251504 (3 pp). DOI: https://doi.org/10.1063/1.2825576
5. Shao Tao, Long Kaihua, Zhang Cheng, Yan Ping, Zhang Shichang, Pan Ruzheng. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics. 2008. Vol. 41. P. 215203 (8 pp). DOI: https://doi.org/10.1088/0022-3727/41/21/215203
6. Shuai Zhang, Li Jia, Wen-chun Wang , De-zheng Yang, Kai Tang, Zhi-jie Liu. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2014. Vol. 117. Pp. 535–540. DOI: https://doi.org/10.1016/j.saa.2013.08.051
7. Bozhko I.V., Karlov A.N., Kondratenko I.P., Charnyj D.V. Development of complex for water treatment with pulse barrier discharge. Tekhnichna Elektrodynamika. 2017. No 6. Pp. 80–86. (Ukr). DOI: https://doi.org/10.15407/techned2017.06.080
8. Bo Jiang, Jingtang Zheng, Shi Qiu, Qinhui Zhang, Zifeng Yan, Qingzhong Xue. Review on electrical discharge plasma technology for wastewater. Chemical Engineering Journal. 2014. No 236. Pp. 348-363.  DOI: https://doi.org/10.1016/j.cej.2013.09.090
9. Shen Zhao, Chunjing Hao, Di Xu, Yiyong Wen, Jian Qiu, Kefu Liu. Effect of Electrical Parameters on Energy Yield of Organic Pollutant Degradation in a Dielectric Barrier Discharge Reactor. IEEE Transactions on Plasma Science. 2017. Vol. 45. Issue 6. Pр. 1043 – 1050. DOI: https://doi.org/10.1109/TPS.2017.2691726
10. Gnapowski E., Gnapowski S., Pytka Ja. Effect of Mesh Geometry on Power, Efficiency, and Homogeneity of Barrier Discharges in the Presence of Glass Dielectric. IEEE Transactions on Plasma Science. 2018. Vol. 46. Issue 10. Pp. 3493 – 3498. DOI: https://doi.org/10.1109/TPS.2018.2816065
11. Bozhko I.V., Serdyuk Y.V. Determination of Energy of a Pulsed Dielectric Barrier Discharge and Method for Increasing Its Efficiency. IEEE Transactions on Plasma Science. 2017. Vol. 45. Issue 12. Pp. 3064 – 3069. DOI: https://doi.org/10.1109/TPS.2017.2760888
12. Yukinori Sakiyama, David B. Graves, Hung-Wen Chang, Tetsuji Shimizu, Gregor E., Morfill J. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. Journal of Physics D: Applied Physics. 2012. Vol. 45. P. 425201 (19 pp). DOI: https://doi.org/10.1088/0022-3727/45/42/425201

PDF