PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2018.06.081


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2018 (November/December)
Pages 81 – 84


J. Herlender, K. Solak, J. Izhykowski
Wroclaw University of Science and Technology,
27 Wybrzezhe Wyspianskiego st., 50-370 Wroclaw, Poland,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript



In this paper, the analysis of impedance - differential protective algorithm dedicated for transmission line protection relay is presented. Measurements of current and voltage at both line ends enable to formulate a differential impedance which constitutes efficient criterion for protection purposes. Special attention is focused on algorithm operation in case of external faults appearance, which have to be distinguished properly due to security reasons in both situations - without and with CTs saturation. The sensitivity and the reliability of the presented protection algorithm were evaluated based on simulation carried out in ATP-EMTP simulation program. References 9, figures 3, table 1.


Key words: differential protection, transmission line, CT saturation, ATP-EMTP, simulation.


Received:    02.03.2018
Accepted:    12.04.2018
Published:   23.10.2018



1. Roberts J., Tziouvaras D.A., Benmouyal G., Altuve H. The effect of Multiprinciple Line Protection on Dependability and Security. Line Current Differential Protection: A Collection of Technical Papers Representing Modern Solutions. Schweitzer Engineering Laboratories, Inc., USA, 2014. Pp. 1-30.
2. Lyonetti D.R.M., Bo Z.Q., Weller G., Jiang G. A new directional comparison technique for the protection of teed transmission circuits. Proc. Power Eng. Soc. Winter Meeting, IEEE, Singapore, January 23-27, 2000. Pp. 1979–1984.
3. Miller H., Burger J., Fischer N., Kasztenny B. Modern line current differential protection solutions. Line Current Differential Protection: A Collection of Technical Papers Representing Modern Solutions. Schweitzer Engineering Laboratories, Inc., USA, 2014. Pp. 77-102.
4. Solak K., Rebizant W., Klimek A. Fuzzy Adaptive Transmission-Line Differential Relay Immune to CT Saturation. IEEE Trans. Power Del. April 2012. Vol. 27. No 2. Pp. 766-772. DOI: https://doi.org/10.1109/TPWRD.2011.2179815
5. Villamagna N., Crossley P.A. A CT saturation detection algorithmusing symmetrical components for current differential protection. IEEE Trans. Power Del. 2006. Vol. 21. No 1. Pp. 38-45. DOI: https://doi.org/10.1109/TPWRD.2005.848654
6. Hao Z., Guan J., Chen W., Feng D., Jieqing D., Yidan L., Xiaohui J. Anti-saturation algorithm in differential protection based on the phaselet. 5th International Conference on Electrical Utility Deregulation and Restructuring on and Power Technologies (DRP2015). Changsha, China, November 26-29, 2015. Pp. 1030-1035. DOI: https://doi.org/10.1109/DRPT.2015.7432382
7. Ji T.Y., He Q., Shi M.J., Li M.S., Wu Q.H. CT saturation detection and compensation using mathematical morphology and linear regression. The IEEE PES Innovative Smart Grid Technologies 2016 Asian ConferenceTechnologies (ISGT-Asia). Melbourne, Australia, November 28-30, 2016. Pp. 1054-1059.
8. Bolandi T.G., Seyedi H., Hashemi S.M., Nezhad P.S. Impedance-Differential Protection: A new approach to trannsmission line pilot protection. IEEE Trans. Power Del. 2015. Vol. 30. No 6. Pp. 2510-2517. DOI: https://doi.org/10.1109/TPWRD.2014.2387689
9. Suonan J.L., Deng X.Y., Liu K. Transmission line pilot protection principle based on integrated impedance. IET Trans. Distrib. Gen. 2011. No 10. Pp. 1003-1010.