PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2018.05.052


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2018 (September/October)
Pages 52 – 56


V.М. Mykhalskyi*, V.M. Sobolev**, V.V. Chopyk***, I.А. Shapoval****
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-8251-3111
** ORCID ID : http://orcid.org/0000-0001-9091-5738
*** ORCID ID : http://orcid.org/0000-0002-5046-5223
**** ORCID ID : http://orcid.org/0000-0002-9107-5061


New approaches to reactive power compensation and simultaneous active filtration in the doubly-fed induction machine (DFIM) are considered. The proposed control algorithms are applied to the DFIM with a stator directly connected to the network, and the rotor connected to the network through a converter with a bi-directional energy flow. The main algorithm for controlling the DFIM is primarily aimed at obtaining maximum power at a variable wind speed. Depending on the power of the converter, the power quality can be improved by compensating the reactive power and harmonics of the current of the network. The control of the rotor inverter is aimed at solving the problems of producing the maximum active power captured by the wind and improving the quality of energy. The control of the line side inverter has the goal of ensuring a smooth control of the voltage in the DC link and providing sinusoidal current in the network. The simulation results indicate that the generation system can operate at its optimal point, and energy quality can be improved. References 8, figures 4, table 1.


Key words: vector control, doubly-fed induction machine, active filtration, reactive power.


Received:    02.03.2018
Accepted:    19.03.2018
Published:  16.08.2018



1. Gaillard A., Poure P., Saadate S., Machmoum M. Variable speed DFIG wind energy system for power generation and harmonic mitigation. Renewable Energy. 2009. No 34. Pp. 1545–1553. DOI: https://www.doi.org/10.1016/j.renene.2008.11.002
2. Boutoubat M., Mokrani L., Machmoum M. Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement. Renewable Energy. 2013. No 50. Pp. 378–386. DOI: https://doi.org/10.1016/j.renene.2012.06.058
3. Pena R., Clare J.C., Asher G.M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings of Electric Power Applications. May 1996. Vol. 143. No 3. Pp. 231–241. DOI: https://www.doi.org/10.1049/ip-epa:19960288
4. Todeschini G., Emanuel A. Transient response of a wind energy conversion system used as active filter. IEEE Trans. Energy Convers. 2011. Vol. 26. No 2. Pp. 522–531. DOI: https://doi.org/10.1109/TEC.2010.2086460
5. Shapoval I., Clare J., Chekhet E. Experimental study of a matrix converter excited doubly-fed induction machine in generation and motoring. Proc. of 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008). Poznan (Poland), 1–3 Sept. 2008. Pp. 307–312. DOI: https://doi.org/10.1109/EPEPEMC.2008.4635283
6. Artemenko M.Yu., Batrak L.M., Polishchuk S.Y., Mykhalskyi V.M., Shapoval I.A. Minimization of Cable Losses in Three-Phase Four-Wire Systems by Means of Instantaneous Compensation with Shunt Active Filters. Proceedings of IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO 2013). 2013. Рp. 359–362. DOI: https://doi.org/10.1109/ELNANO.2013.6552031
7. Abad, G., Lopez, J., Rodriguez, M., Marroyo L., Iwanski G. Doubly fed induction machine: modeling and control for wind energy generation. New Jersey: Wiley, Hoboken, 2011. 625 p. DOI: https://www.doi.org/10.1002/9781118104965
8. Peresada S., Tilli A., Tonielli A. Power control of doubly fed induction machine via output feedback. Control Engineering Practice. Jan. 2004. Vol. 12. No 1. Pp. 41–57. DOI: https://doi.org/10.1016/S0967-0661(02)00285-X