PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.05.039


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2017 (September/October)
Pages 39 – 46


N.I. Suprunovska2*, Y.V. Peretyatko1, S.S. Roziskulov2, V.V. Mikhaylenko1, V.I. Chibelis1, V.S. Oliynyk1
1 – National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
pr. Peremohy, 37, Kyiv, 03056, Ukraine,
е-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0001-7499-9142



The method for regulating the parameters of discharge pulse currents (reducing their duration and increasing the amplitude and rate of current rise) of semiconductor electro-discharge installations with voltage feedback in order to intensify the dynamic force action on their technological load is proposed. The method is based on the use of two pairs of charge and discharge semiconductor (thyristor) switches, which allow to form a bipolar pulsed current in the load and implement the overlay of subsequent capacitor charge to its previous discharge by varying the switching time of the corresponding pairs of charge thyristors. On the basis of performed analysis of the interrelated transients in the branched electrical circuit with variable structure in such installations the dependences of increasing ratios of the charge voltage, charge and discharge currents of the capacitor on the overlap ratio capacitors charge and discharge for different charging circuit Q values are determined. References 15, figures 5.


Key words: capacitor charge, capacitor discharge, bipolar pulse, Q-factor, charge voltage, pulse current, discharge duration, voltage feedback.


Received:     11.04.2017
Accepted:     25.04.2017
Published:   17.08.2017



1. Vovchenko A.I., Tertilov R.V. Synthesis of capacitive non-linear- parametrical energy sources for discharge-pulse technologies. Zbirnyk naukovykh prats Natsionalnoho universytetu korablebuduvannia. 2010.  No 4.  Pp. 118–124. (Rus)
2. Zakharchenko S.N., Kondratenko I.P., Perekos A.Ye., Zalutsky V.P., Kozyrsky V.V., Lopatko K.G. Influence of duration of discharge pulses in a layer of iron granules on the sizes and a structurally-phase state of its electro-eroded particles. Vostochno-Evropeiskii Zhurnal peredovykh tekhnologii. 2012. Vol. 6. No 5 (60). Pp. 66–72. (Rus)
3. Kravchenko V.I., Petkov A.A. Parametrical synthesis of high-voltage pulse test device with capacitive energy storage. Electrical engineering & Electromechanics. 2007. No 6. Pp. 70–75. (Rus)
4. Livshits A.L., Otto M.Sh. Pulse electrotechnology. Moskva: Energoatomizdat, 1983. 352 p. (Rus)
5. Pentegov I.V. Basis of charging circuits of capacitive energy storage. Kyiv: Naukova dumka, 1982. 424 p. (Rus)
6. Suprunovska N.I., Shcherba А.А., Ivashchenko D.S., Beletsky O.A. Prosesses of energy exchange between nonlinear and linear links of electric equivalent circuit of supercapacitors. Tekhnichna Elektrodynamika. 2015. No 5. Pp. 3–11. (Rus)
7. Shidlovskii A.K., Shcherba A.A., Suprunovska N.I. Power processes in the electropulse installations with capacitive energy storages. Kiev: Intercontinental-Ukraina, 2009. – 208 p. (Rus)
8. Shcherba A.A., Suprunovska N.I. Synthesis of electrical circuits with capacitive energy storages in semiconductor formers of power discharge pulses. Tekhnichna Elektrodynamika. 2014. No 1. Pp. 3–11. (Rus)
9. Shcherba A.A., Suprunovska N.I., Synytsyn V.K., Ivashchenko D.S. Aperiodic and Oscillatory Processes of Capacitor Discharge at Forced Limitation of Duration. Tekhnichna Elektrodynamika. 2012. No 3. Pp. 9–10. (Rus)
10. Shcherba A.A., Suprunovska N.I., Ivashchenko D.S. Modeling of Nonlinerial Resistance of Electro-Spark Load Taking into Account its Changes During Discharge Current Flowing in the Load and et Zero Current in it. Tekhnichna Elektrodynamika. 2014. No 5. Pp. 23–25. (Rus)
11. Ivanova O.M., Danylenko M.I., Monastyrskyy G.E., Kolomytsev V.I., Koval Y.M., Shcherba A.A., Zakharchenko S.M., Portier R. Investigation of the formation mechanisms for Ti-Ni-Zr-Cu nanopowders fabricated by electrospark Erosion method in cryogenic liquids. Metallofizika i noveishie tekhnologii. 2009.  Vol. 31.  No 5.  С. 603–614.
12. Kokorin V.V., Perekos A.O., Tshcherba A.A., Babiy O.M., Efimova T.V. Intermartensitic phase transitions in Ni-Mn-Ga alloy, magnetic field effect. Journal of Magnetism and Magnetic Materials.  2006.  Vol. 302.  Iss. 1.  Pp. 34–39.
13. Mysinski W. Power supply unit for an electric discharge machine // 13th European Conference on Power Electronics and Applications, 2009. EPE '09, Poznan, Poland, 01-03 September, 2009. – Pp. 1–7.
14. Nguyen, P.-K., Sungho J., Berkowitz A.E. MnBi particles with high energy density made by spark erosion. J. Appl. Phys. 2014.  Vol. 115.  Iss. 17.  Рp. 17A756-1.
15. Sen B., Kiyawat N., Singh P.K., Mitra S., Ye J.H., Purkait P. Developments in electric power supply configurations for electrical-discharge-machining (EDM). The 5th International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003. PEDS 2003, Singapore, 17-20 November 2003.  Vol. 1.  Pp. 659–664.