PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.05.032


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2017 (September/October)
Pages 32 – 38


Kucheriava I.M.
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript



The computer modeling and analysis of the coupled electrical, thermal processes and thermal stresses in conducting granules during their spark erosion treatment are carried out. The non-linear properties of the material and phase (solid-liquid) transition at melting point are taken into account. The dependence of the volume of molten and evaporated material as well as the maximum values of temperature and equivalent tensile stress in the granule on the duration of heat flow is revealed. The two thermal sources such as surface heat flow owing to the passage of pulsed current and volume heat source due to resistive heating are considered. The Joule's losses are determined by electric problem solving. The simulation of granule cooling after the end of current pulse is performed. The paper presents the realization of the approach to determine the optimum value of the pulse duration, starting from which the greatest production of powdered particles from destructed granule material taking into account the technological requirements is expected. References 15, figures 5, table 1.


Key words: spark erosion of metal granules, electrical and thermal processes, non-linear characteristics, equivalent tensile stress (von Mises stress), multiphysics modeling.


Received:     24.01.2017
Accepted:     09.03.2017
Published:   17.08.2017



1. Asanov U.А., Tsoi A.D., Shcherba A.A., Kazekin V.I. Electro-erosion technology of compounds and powders of metals. runze: Ilim, 1990. 256 p. (Rus)
2. Ivanova O.M., Danilenko M.I., Monastyrskyi G.E., Kolomytsev V.I., Koval Yu.N., Shcherba A.A., Zakharchenko S.M., Portier R. Study of formation mechanisms for Ti-Ni-Zr-Cu nanopowders produced by spark erosion in cryogenic liquids. Metallofizika i noveishie tekhnologii. 2009. Vol. 31. No 5. Pp. 603–614. (Ukr)
3. Knoepfel H. Pulsed high magnetic fields. Moskva: Mir, 1972. 392 p. (Rus)
4. Kucheriava I.M. Thermal analysis of spark erosion treatment of granules. Tekhnichna Elektrodynamika. 2003. No 2. Pp. 67–71. (Rus)
5. Rykalin N.N., Uglov A.A., Zuev I.V., Kakora A.N. Laser and electronic laser treatment of materials. Handbook. Moskva: Mashinostroenie, 1985. 496 p. (Rus)
6. Malkov M.P. Handbook on physico-technical background knowledge of cryogenics. Moskva: Enegiia, 1973. 392 p. (Rus)
7. Podoltsev O.D., Kucheriava I.M. Multiphysics modeling of electrotechnical devices. Tekhnichna Elektrodynamika. 2015. No 2. Pp. 3–15. (Rus)
8. Samoilovitch Yu.A. Thermal processes during continuous casting of steel. Moskva: Metallurgiia, 1982. 152 p. (Rus)
9. Manual on non-ferrous metals (mechanical, physical, chemical, corrosive properties of non-ferrous metals…). http://libmetal.ru/al/al%20prop.htm (Rus)
10. Stolovich N.N., Minitskaia N.S. Temperature dependences of termophysical properties of some metals. Minsk: Nauka i tekhnika, 1975. 157 p. (Rus)
11. Carrey J., Radousky H.B., Berkowitz A.E. Spark-eroded particles: influence of processing parameters. Journal of Applied Physics. 2004. Vol. 95. No 3. Pp. 823–829. DOI: https://doi.org/10.1063/1.1635973
12. Comsol multiphysics modeling and simulation software. http://www.comsol.com/
13. Howatson A.M., Lund P.G., Todd J.D. Engineering tables and data. London; New York: Chapman and Hall, 1991. 181 p.
14. Shcherba A.A., Podoltsev O.D., Kucheriava I.M. Spark erosion of conducting granules in a liquid: analysis of electromagnetic, thermal and hydrodynamic processes. Tekhnichna Elektrodynamika. 2004. No 6. Pp. 4–17.

15. Totten G.E., MacKenzie D.S. Handbook of aluminum. CRC Press, 2003. 1310 p.