PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.03.079


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 3, 2017 (May/June)
Pages 79 – 88


S.Yu. Plesnetsov1, O.N. Petrishchev2, R.P. Migushchenko1, G.M. Suchkov1
1 – National Technical University “Kharkiv Polytechnic Institute”,
2, Kirpichova str., Kharkiv, 61002, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
1 – National Technical University of Ukraine “Kyiv Polytechnic Institute”,
37, Prospect Peremohy, Kyiv, 03056, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript



Physical and mathematical model of the process of transformation of electromagnetic energy into acoustic energy in the hollow ferromagnetic rod circumferentially magnetized by permanent polarizing magnetic field designed in the form of differential equations. With the help of the Fourier integral the general solution of the inhomogeneous differential equation for torsional mode of traveling waves was solved. The contribution of the stiffness of the rod magnetized in the intensity of the excited acoustic field was estimated. In the model example frequency characteristics of electromagnetic - acoustic conversion were investigated and explained. The relationship between the geometric parameters of the converter model and product properties of the material with the amplitude of the excited torsional waves at a given frequency was discovered. The research results can be used in the energy, nuclear, chemical and other industrial areas appropriate for ultrasonic inspection of tubular products. References 11, figures 5.


Key words: torsional wave, electromagnetic - acoustic conversion, the tubular article, the wave converter characteristic.


Received:    02.12.2016
Accepted:    21.02.2017
Published:  15.05.2017



1. Vlasov K. B. Several issues of elastic ferromagnetic (magnetostrictive) environments theory. Izvestiia AN SSSR. Seriia fizicheskaia. 1957. Vol. 21. No 8. Pp. 1140–1148. (Rus)
2. Ermolov Y.N., Lange Iu.V. Non-destructive testing. Moskva: Mashinostroenie, 2004. 864 p.
3. Ermolov Y.N. Non-destructive testing. Moskva: Vysshaia shkola, 1991. 283 p. (Rus)
4. Koshliakov N.S., Glyner E.B., Smirnov M.M. Partial derivative equations of mathematical physics. Moskva: Vysshaia shkola, 1970. 710 p. (Rus)
5. Myttra R., Ly S. The analytical methods of waveguide theory. Moskva: Mir, 1974. 327 p. (Rus)
6. Petryshchev O.M., Trokhymets A.P., Trokhymets V.A. Method for determining the physical and mechanical parameters of polycrystalline ferromagnetic or magnetostrictive material. Patent Ukrainy No 18475. 2006.  (Ukr)
7. Smyrnov V.Y. High math course. Volume III. Part 2. Moskva: Nauka, 1974. 672 p. (Rus)
8. Sudakova K.V., Kaziukevych Y.L. On increase of metallurgic product quality testing efficiency. V mire nerazrushaiushchego kontrolia. 2004. No 3. Pp. 8–10. (Rus)
9. Feodosev V.Y. Strength of materials. Moskva: Nauka, 1986. 512 p. (Rus)
10. Suchkov G.M., Taranenko Yu.K., Khomyak Yu.V. A Non-Contact Multifunctional Ultrasonic Transducer for Measurements and Non-Destructive Testing. Measurement Techniques. 2016. No 12. Vol. 59. Issue 9. Pp. 990–993.
11. Zhichao Cai, Suzhen Liu, Chuang Zhang, Oingxin Yang. Microscopic Mechanism and Experiment Research of Electromagnetically Induced Acoustic Emission. IEEE Transactions on Magnetics. 2015. Vol. 51. No 11. Code 9401804. 4 p.