PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.03.013

THREE-DIMENSIONAL MODELING OF ELECTROMAGNETIC AND THERMAL PROCESSES OF INDUCTION MELTING OF COPPER TEMPLATE WITH ACCOUNTING OF INSTALLATION ELEMENTS DESIGN

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 3, 2017 (May/June)
Pages 13 – 21

 

Authors
V.M. Zolotarev2, M.A. Shcherba1, V.V. Zolotarev2, R.V. Belyanin2
1 – Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – PJSC "Yuzhcable Works", Avtogennaia st., 7, Kharkov, 61099, Ukraine,
е-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

A three-dimensional mathematical model has been developed and an analysis of inhomogeneous distribution of magnetic and temperature fields have been made in the lined inductor of melting-holding furnace for copper melting and in the copper template. The analysis was done considering a complex geometry of the inductor (which typical dimensions of the elements differ significantly), nonlinear dependence of the copper conductivity on temperature, ferromagnetic properties of a steel magnetic core and an availability of water cooling of the inductor coils and housing, accounting of the fluid temperature and mass transfer. A long-term process of the copper template melting of 18 hours duration at unsteady inductor power was considered. The local areas of the maximum of temperatures and temperature gradients in the lined inductor and their time changes were determined to analyze a reliability and a lifetime of the melting-holding furnace. References 18, figures 7.

 

Key words: Induction heating, coupled electromagnetic and thermal processes, three-dimensional mathematical modelling, nonlinear properties.

 

Received:    05.04.2017
Accepted:    17.04.2017
Published:  15.05.2017

 

References

1. Zolotarev V.M., Belyanin R.V., Podoltsev О.D. Analysis of electromagnetic processes in the induction channel furnace used in the cable industry. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2016. Vol. 44. Pp. 110–115. (Rus)
2. Shcherba A.A., Podoltsev О.D., Kucheriava I.М., Ushakov V.I. Computer modeling of electrothermal processes and thermomechanical stress at induction heating of moving copper ingots. Tekhnichna Elektrodynamika. 2013. No 2. Pp. 10–18. (Rus)
3. Shcherba М.А. Patterns of the electric field distribution in a dielectric medium at changing of sizes and shapes of the conducting inclusions. Tekhnichna Elektrodynamika. 2012. Vol. 2. Pp. 19–20. (Rus)
4. Shcherba M.A. The features of the local electric field amplifications by conducting inclusions in nonlinear polymer insulation. Tekhnichna Elektrodynamika. 2015. Vol. 2. Pp. 16–23. (Rus)
5. Shcherba M.А., Podoltsev A.D. Electric field and current density distribution near water inclusions of polymer insulation of high-voltage cables in view of its nonlinear properties. Tekhnichna Elektrodynamika. 2016. Vol. 1. Pp. 11–19. (Rus)
6. Baake E., Nacke B., Bernier F., Vogt M. Experimental and numerical investigations of the temperature field and melt flow in the induction furnace with cold crucible. Intern. J. for computation and mathematics in electrical and electronic engineering COMPEL. 2003. Vol. 22(1). Pp. 88–97.
7. Bay F., Labbé V., Favennec Y. A numerical model for induction heating processes coupling electro-magnetism and thermomechanics. Intern. J. for Numerical Methods in Engineering. 2003. Vol. 58(6). Pp. 839–867.
8. Bermúdez A., Gómez D., Muñiz M.C., Salgado P., Vázquez R. Numerical simulation of a thermo-electromagneto-hydrodynamic problem in an induction heating furnace. Applied Numerical Mathematics. 2009. Vol. 59(9). Pp. 2082–2104.
9. Bermúdez A., Gómez D., Muñiz M.C., Salgado P. Transient numerical simulation of a thermoelectrical problem in cylindrical induction heating furnaces. Advances in computational mathematics. 2007. Vol. 26(1-3). Pp. 39–62.
10. Chaboudez C., Clain S., Glardon R., Mari D. Numerical modeling in induction heating for axisymmetric geometries. IEEE Trans. on Magnetics. 1997. Vol. 33(1). Рр. 739–745.
11. Comsol Multiphysics, https://www.comsol.com/, Comsol Inc., Burlington, MA, USA, 2017.
12. Ghojel J.I., Ibrahim R.N. Computer simulation of the thermal regime of double-loop channel induction furnaces. J. of materials processing technology. 2004. Vol. 153. Рр. 386–391.
13. Lucía O., Maussion P., Dede E.J. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans. on Industrial Electronics. 2014. Vol. 61.5. Pp. 2509–2520.
14. Rapoport E., Pleshivtseva Yu. Optimal control of induction heating processes. CRC Press, 2006.
15. Rudnev V., Loveless D., Cook R.L., Black M. Handbook of induction heating. CRC Press, 2002.
16. Ter Maten E.J.W., Melissen J.B.M. Simulation of inductive heating. IEEE Trans. on Magnetics. 1992. Vol. 28.2. Pp. 1287–1290.
17. Umbrashko A., Baake E., Nacke B., Jakovics A. Modeling of the turbulent flow in induction furnaces. Metallurgical and Materials Trans. 2006. Vol. 37(5). Pp. 831–838.
18. UPCAST, http://www.upcast.com/, Finland.

 

PDF