PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.02.013

ANALYTICAL CALCULATION OF MAGNETIC FIELD OF THREE-PHASE CABLE LINES WITH TWO-POINT BONDED SHIELDS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2017 (March/April)
Pages 13 – 18

 

Authors
V.Yu. Rozov, O.O. Tkachenko, A.V. Yerisov, V.S. Grinchenko
State Institution Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine,
19, Industrialna st., Kharkiv, 61106, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

In this paper we produce an analytical model of the magnetic field of high-voltage three-phase cable line with two-point bonded shields. It’s supposed that the cable line consists of three single-core XLPE insulated cables. The produced analytical model allows to calculate the electric currents induced in shields of cables and to determine the magnetic field distribution for the arbitrary layout of cables. We receive an exact compact expression for shielding factor of the magnetic field of the trefoil cable line with two-point bonded shields. Also we receive a simplistic compact expression for shielding factor of the magnetic field of the flat cable line with two-point bonded shields. The comparison with exact analytical expression and experimental results shows that error of simplistic expression lays within 5%. References 15, figures 7.

 

Key words: cable line, magnetic field, cable shield, shield grounding, shielding factor.

 

Received:    08.12.2016
Accepted:    19.12.2016
Published:   23.03.2017

 

References

1. Grinchenko V.S. Alpha-beta transformation approach for the active shielding of flat power line. Tekhnichna Elektrodynamika.  2014.  No 4.  Pp. 11-13.
2. Grinchenko V.S. Increase of screening efficiency of technogenic magnetic field of underground high-voltage power cables. Visnyk Natsionalnoi Akademii Nauk Ukrainy. 2014.  No 8.  Pp. 71-76. (Ukr)
3. Zolotarev V.M., Karpushenko V.P., Gurin A.G., Antonec Ju.A., Zolotarev V.V., Naumenko A.A. Designs and electrical field of cables with XLPE insulation.  Kharkiv: Maidan, 2014.  188 p. (Rus)
4. Kalantarov P.L., Tseytlin L.A. Inductance calculations.  Leningrad: Energoatomizdat, 1986.  488 p. (Rus)
5. Kovrigin L.А. The longitudinal currents in the screens of the single-core cables. Kabel-nеws.  2009.  No 3.  Pp. 56-58. (Rus)
6. Larina E.Т. Power cables and high-voltage cable lines.  Moskva: Energoatomizdat, 1996.  464 p. (Rus)
7. Podoltsev А.D., Kucheriava I.M. Multiphysics modeling of electrotechnical devices. Tekhnichna Elektrodynamika.  2015.  No 2.  Pp. 3-15. (Rus)
8. Rozov V.Yu., Dobrodeyev P.N., Erisov A.V., Tkachenko A.O. Increasing the efficiency of contour shielding of the magnetic field of high-voltage cable lines. Tekhnichna Elektrodynamika.  2016.  No 4.  Pp. 5-7. (Rus)
9. Rozov V.Yu., Kvytsynskyi A.A., Dobrodeyev P.N., Grinchenko V.S., Erisov A.V., Tkachenko A.O. Study of the magnetic field of three phase lines of single core power cables with two-end bonding of their shields. Electrical engineering & Electromechanics. 2015.  No 4.  Pp. 56-61. (Rus)
10. Electrical Installation Regulations.  Kharkiv: Мinenerhovuhillia Ukrainy, 2014.  793 p. (Ukr)
11. Guidance for the selection, laying, installation, testing and operation of 45/150 kV XLPE insulated high voltage power cables.  Kharkiv: ZAO «Yuzhkabel», 2014.  88 p. (Rus)
12. Karady G.G., Nunez C.V., Raghavan R. The feasibility of magnetic field reduction by phase relationship optimization in cable systems. IEEE Transactions on Power Delivery.  1998.  Vol. 13.  No 2.  Pp. 647-654.
13. Lin Y., Xu Z. Cable sheath loss reduction strategy research based on coupled line model. IEEE Transactions on Power Delivery. 2015.  Vol. 30.  No 5.  Pp. 1-8.
14. Matsuura K., Ohira S., Kinoshita H., Yamaguchi H., Takami S., Miyai K.  A simplified analytical model of power cable for the calculation of transient voltage and current of faulted power systems. Electrical Engineering in Japan.  1982.  Vol. 102.  No 3.  Pp. 59-66.
15. Walling R.A., Paserba J.J., Burns C.W. Series-capacitor compensated shield scheme for enhanced mitigation of transmission line magnetic fields. IEEE Transactions on Power Delivery. 1993.  Vol. 8.  No 1.  Pp. 461–469.

 

PDF