PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.01.062

STOCHASTIC APPROACH TO DETERMINATION OF THE DISTRIBUTED GENERATION OPTIMAL PLACEMENT

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 1, 2017 (January/February)
Pages 62 – 70

 

Authors
O.V. Kyrylenko, L.M. Lukianenko, I.S. Goncharenko
Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy pr., 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

Constant growth of distributed generation in power systems has not only positive changes. Incorrect placement of distributed generation can worsen steady-state parameters of a power grid, for example, voltage profile. Method for optimal distributed generation placement had been developed previously [1, 9, 11, 17, 21]. Examination of the method shown that method had limited usage. Performance of the method greatly depended on power grid. The object of this paper was to develop a new method for optimal distributed generation placement. The object of the paper was reached in four steps: 1) optimal distributed generation placement method requirements creation; 2) development of the criteria and constraints system; 3) objective function formulation; 4) optimal distributed generation placement method development. The proposed stochastic method is combined of mechanisms of evolutionary algorithms. The core idea of the new method is an evolutionary narrowing of power grid buses list, which form all the possible solutions to the problem. Thus, the buses, which form the worst solutions, are banned and do not take part in evolutionary selection of the buses. Examination of the method has been carried out on the IEEE 9-, 14-, 39- and 57-bus test systems. The results of simulation tests show that the effectiveness of the new method is high and does not depend on the properties of the studied grids. References 22, figures 4, tables 5.

 

Key words: distributed generation, Monte-Carlo method, optimization, renewable energy sources, evolutionary algorithm.

 

Received:    17.11.2016
Accepted:    03.01.2017
Published:  19.01.2017

 

References

1. Goncharenko I.S. Some Problems of the Efficiency Improvement of the Method for Determination of the Optimal Placement and Capacity of Distributed Generation. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2015.  No 42.  Pp. 47-51. (Ukr)
2. Yeroshenko S.A., Dmitriiev S.A., Kuznetsov D.V., Kokin S.E., Pazdierin A.V. Problems of Distributed Generation Placement in Megacities. Vestnik Samarskogo gosudarsvennogo tekhnicheskogo universitieta.  2011.  No 4.  Pp. 126-134. (Rus)
3. Yeroshenko S.A., Karpienko A.A., Pazdierin A.V. Determination of Optimal Capacity and Allocation of Distributed Generation in the Power Grid. Elektrotekhnika glazami molodezhi: nauchnye trudy vserossiiskoi nauchno-tekhnicheskoi konferentsii.  Yekaterinburg: UrFU, 2010.  Pp. 170-175. (Rus)
4. Kyryk V.V., Gubatuyk O.S. Optimization of the Search Method of the Distributed Generation. Naukovyi Visnyk Akademii municipalnoho upravlinnia. Seriia Tekhnika.  2015.  No 2 (10).  Pp. 67-74. (Ukr)
5. Kyrylenko O.V., Butkevych O.F., Lukianenko L.M. Power Supply of Disconnected Due to Fault Consumers Restoration Problem Solution Based on Genetic Algorithms. Tekhnichna Elektrodynamika. Tematychnyi vypusk Sylova elektronika ta enerhoefektyvnist.  2009.  Vol. 1.  Pp. 55-60. (Ukr)
6. Kyrylenko O.V., Pavlovskyi V.V., Lukianenko L.M. Technical Aspects of Adoption of Distributed Generation Sources. Tekhnichna Elektrodynamika. 2011.  No 1.  Pp. 46-53. (Ukr)
7. Kyrylenko O., Pavlovskyi V., Lukianenko L., Trach I. The Problem of Integration of Renewable Source of Energy into the "Weak" Electrical Networks. Tekhnichna Elektrodynamika.  2012.  No 3.  Pp. 25-26. (Ukr)
8. Lezhniuk P.D., Kovalchuk A.A., Kulyk V.V., Sobchuk D.S. Optimization of the dispersed energy sources connection schemes to the power grids based on sensitivity analysis. Energetika: upravlenie, kachestvo i effektivnost ispolzovaniia energoresursov. Sbornik trudov.  2013.  Pp. 102-105. (Rus)
9. Lukianenko L.M., Goncharenko I.S., Blonska O.V. Determination of the Optimal Placement and Capacity of Distributed Generation. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2014.  No 37.  Pp. 26-33. (Ukr)
10. Official web page of DIgSILENT – the developer of PowerFactory.  Access mode: http://digsilent.de/ (accessed 14.11.2016)
11. Pavlovskyi V.V., Lukianenko L.M., Goncharenko I.S., Zaharov A.M. Limitation of RES Power Under the Terms of Connection to Electric Network. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy.  2016.  No 43.  Pp. 18-23. (Ukr)
12. Prakhovnyk A.V., Popov V.A., Kulyk O.V. Model of decentralized generation integration into power system on the lowest level of control hierarchy. Enerhetyka: ekonomika, tekhnolohii, ekolohiia.  2006.  No 1.  Pp. 101-109. (Ukr)
13. Akorede M.F., Hizam H., Aris I., Ab Kadir M.Z.A. A Review of Strategies for Optimal Placement of Distributed Generation in Power Distribution Systems. Research Journal of Applied Sciences.  2010.  No 5 (2).  Pp. 137-145.
14. Aref A., Davoudi M, Seifi A., Ganjkhany I., id Davoudi M. Particle Swarm Optimization Based Method for Optimal Placement and Estimation of DG Capacity in Distribution Networks. International Journal of Science and Technology.  2012.  Vol. 2.  No 7.  Pp. 486-491.
15. Atwa Y.M., El-Saadany E.F., Salama M.M.A., Seethapathe R. Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization. IEEE Transactions on Power Systems.  2010.  Vol. 25.  No. 1.  P. 360-370. DOI:  https://doi.org/10.1109/TPWRS.2009.2030276

16. Energy from renewable sources. Eurostat. Access mode: http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_from_renewable_sources
17. Goncharenko I.S. Distributed generation optimal placement. Climatic pattern consideration. Proceedings of the 2nd IEEE International Conference on Intelligent Energy and Power Systems (IEPS-2016).  2016.  Pp. 93-96. DOI:  https://doi.org/10.1109/IEPS.2016.7521875

18. Harrison G.P., Piccolo A., Siano P., Wallace A.R. Exploring the Tradeoffs Between Incentives for Distributed Generation Developers and DNOs. IEEE Transactions on Power Systems. 2007.  Vol. 22.  No 2.  Pp. 821-828. DOI:  https://doi.org/10.1109/TPWRS.2007.895176

19. Johnson R.A., Wichern D.W. Applied Multivariate Statistical Analysis.  Upper Saddle River, New Jersey: Pearson Prentice Hall, 2007.  773 p.
20. Lezhniuk P.D., Komar V.A., Sobchuk D.S. Method for Determination of Optimal Installed Capacity of Renewable Sources of Energy by the Criterion of Minimum Losses of Active Power in Distribution System. Energy and Power Engineering.  2014.  No 6.  Pp. 37-46.
21. Lukianenko L.M., Goncharenko I.S., Blonska O.V. Determination of the Optimal Placement and Capacity of Distributed Generation. Proceedings of the IEEE International Conference on Intelligent Energy and Power Systems (IEPS-2014).  2014.  Pp. 159-162. DOI:  https://doi.org/10.1109/IEPS.2014.6874170
22. Safari A., Jahani R., Shayanfar H.A., Olamaei J. Optimal DG Allocation in Distribution Network. International Journal of Electrical and Electronics Engineering.  2010.  Vol. 8.  No 4.  Pp. 550-553.

 

PDF