PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.01.017

NUMERICAL STUDY OF ELECTRIC FIELD DISTRIBUTION IN HIGH-VOLTAGE CABLE TERMINATION WITH STRESS CONTROL CONE

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 1, 2017 (January/February)
Pages 17 – 22

 

Author
Kucheriava I.M.
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

The electric field distribution in the vicinity of stress cone of high-voltage XLPE insulated cable termination (110 kV) is studied by computer modeling. The dependence of cable insulation conductivity on electric intensity and the different cone positions relative to the cutting ends of the cable outer semiconducting layer and copper wire shield are taken into account. The stress control cone is considered both in the form of only cone reflector and as a complete stress cone with insulation body. The peculiarities of field distribution depending on the cone shape and surface roughness are analyzed. The attained results are of interest for designing and improvement of up-to-date high- and extra- high-voltage cable terminations. References 13, figures 5, table 1.

 

Key words: cross linked polyethylene (XLPE) insulated power cable, high-voltage cable termination, stress control cone, cone position relative to cable components, surface roughness of cone, computer modeling.

 

Received:    23.06.2016
Accepted:     05.07.2016
Published:   19.01.2017

 

References

1. Berger L.I. Dielectric strength of insulating materials. Handbook of Chemistry and Physics.  CRC Press/Taylor and Francis Group: Boca Raton, FL, 2006.  Pp. 42–46.

2. Chen C., Liu G., Lu G., Jin W. Influence of cable terminal stress cone install incorrectly. Proceedings of IEEE 9-th Internat. Conference on the Properties and Applications of Dielectric Materials, ICPADM 2009.  19–23 July 2009.  Pp. 63–65. DOI:  https://doi.org/10.1109/ICPADM.2009.5252506
3. Comsol multiphysics modeling and simulation software.  http://www.comsol.com/
4. Donzel L., Greuter F., Christen T. Nonlinear resistive electric field grading. Part 2: materials and applications. IEEE Electrical Insulation Magazine.  2011.  Vol. 27.  No 2.  Pp. 18–29. DOI: https://doi.org/10.1109/MEI.2011.5739419
5. Egiziano L., Tucci V., Petrarca C., Vitelli M. Effect of thermal and mechanical stresses on the electrical properties of stress grading materials. IEEE Internat. Conference on Conduction and Breakdown in Solid Dielectries.  Sweden, June 22–25, 1998.  Pp. 553–556. DOI: https://doi.org/10.1109/ICSD.1998.709345
6. Guk D.А., Kamenskij M.К., Makarov L.E., Obraztsov V.L., Shuvalov M.Yu. New high-voltage testing center of Joint-stock company "VNIIKP". Experience of testing and study of power cables, accessories and materials for their production. Kabeli i Provoda.  2014.  No 5 (348).  Pp. 35–42. (Rus)
7. Gurin A.G., Gontar Yu.G. Failure of surface layer of a dielectric in end cable terminations under the action of lightning surges. Visnyk NTU "KhPI".  2013.  No 59 (1032).  Pp. 53–60. (Rus)
8. Hampton N. HV and EHV cable system aging and testing issues. Chapter 3. – University System of Georgia, Institute of Technology NEETRAC – National Electric Energy Testing, Research and Application Center. – Georgia Tech Research Corporation, February 2016.  19 p.  http://www.cdfi.gatech.edu/publications/3-HV-Issues-7_with-Copyright.pdf
9. Kotov R.V. Electric field distribution in cable cold shrink terminations. Elektro.  2006.  No 5.  Pp. 40–44. (Rus)
10. Kucheriava I.M. Modeling of electric field in cable termination with stress control tube. Tekhnichna Elektrodynamika. 2016.  No 6.  Pp. 3–9. (Rus)
11. Olsson C.О. Modelling of thermal behaviour of polymer insulation at high electric dc field. Proceedings of the 5-th European Thermal-Sciences Conference.  The Netherlands, 18–22 May, 2008.  8 p.  http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.491.3890&rep=rep1&type=pdf
12. Pilling Yu., Haim K-D, Bersh R. Silicone for cable accessories. Advantages are in chemical characteristics. Novosti Elektrotekhniky. 2004.  No 4 (28).  http://www.news.elteh. ru/arh/2004/28/11.php (accessed 12 July 2016). (Rus)
13. Zeveke G.V., Ionkin P.A., Netushil A.V., Strakhov S.V. Foundations of the circuit theory.  Moskva: Energoatomizdat, 1989.  528 p. (Rus)

 

PDF