PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.01.003

USE OF POWER METHOD FOR IDENTIFICATION OF NONLINEARITY PARAMETERS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 1, 2017 (January/February)
Pages 3 – 9

 

Authors
M. Zagirnyak, D. Mosiundz, D. Rodkin
Institute of Electromechanics, Energy Saving and Control Systems,
Kremenchuk Mykhailo Ostrohradskyi National University,
20, Pershotravneva Street, Kremenchuk, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

Procedure of calculation of nonlinearity parameters by power method based on equations of balance of the source and consumer instantaneous powers components according to each separate harmonic is proposed. It is demonstrated that such an approach makes it possible to obtain the required number of equations for determination of the nonlinearity parameters. The method is verified using the example of calculation of parameters of a simple electric circuit with a nonlinear inductance. References 12, figures 6.

 

Key words: nonlinear element, instantaneous power, power method, equations of instantaneous power components balance.

 

Received:    11.04.2016
Accepted:    16.12.2016
Published:   19.01.2017

 

References

1. Rodkin D.Y. On the inconsistency of some theory of the energy processes with Tellegen’s theorem. Problems of automated electric drive. Theory and practice.  2010.  Vol. 28.  Pp. 127–135. (Rus)
2. Engberg J., Larsen T. Theory of Linear and Nonlinear Circuits.  Denmark: The Univesity of Aalborg, 1995.
3. Heitbrink A., Beyer A. A new approach for the calculation of nonlinear magnetic circuits. Journal of Applied Physics.  2009.  Vol. 73.  Pр. 6793–6795.
4. Douglas Wilhelm Harder, Math M. Numerical Methods for Electrical and Computer Engineers. Canada, Ontario: University of Waterloo, 2005.
5. Salon S.J. Finite Element Analysis of Electrical Machines.  Kluwer Academic Publishers, 1995.
6. Wcislik M. Powers Balances in AC Electric Circuit with Nonlinear Load. IEEE Transactions on Industry Applications, Harmonics and Quality of Power (ICHQP).  2010.  Pр. 1–6.
7. Zghoul F.N., Egolf D. Analyzing nonlinear circuits using a modified harmonic balance method.  IEEE Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD).  2012.  Pp. 213–216.
8. Depenbrock M., Staudt V., Wrede H. A theoretical investigation of original and modified instantaneous power theory applied to four-wire systems. IEEE Transactions on Industry Applications. 2003.  Vol. 39.  No 4.  Pp. 1089–1095.
9. Rodkin D., Mosyundz D., Cherniy A., Korenkova T. Enhancement capabilities of energy method in task of identification nonlinearity of electromechanical system. Electromechanical and energy saving systems.  2012.  Vol. 18.  No 2. – Pp. 10–17. (Rus)
10. Rodkin D.I., Byalobrzheskii A.V., Lomonos A.I. Energy processes in grid with polyharmonic voltage and current. Russian Electrical Engineering.  2004.  No 75(6).  Pp. 60–69.
11. Meisel J. Principles of Electromechanical Energy Conversion.  New York: McGraw-Hill, 1996.
12. Chen W.K. Feedback, Nonlinear, and Distributed Circuits.  USA, Chicago: CRC Press, 2009.

 

PDF