PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2016.06.003


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 6, 2016 (November/December)
Pages 3 – 9


Institute of Electrodynamics National Academy of Science of Ukraine, pr. Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript



The electric field distribution in the end termination of medium-voltage cross-linked polyethylene insulated power cable is studied by computer modeling. The stress control tube is used in the cable termination to reduce field nonuniformity. The dependence of conductivity of the cable insulation on electric intensity and the tube length in axial direction are taken into account. The conductivity and dielectric permittivity of tube material are varied. The possible defects owing to insulation surface roughness and air bubbles under stress control tube are considered. The practical relevance of attained results is associated with selection of the length and material of field-grading tube and with ensuring of electric strength of cable insulation at availability of defects on its external surface. References 12, figures 4, table 1.


Key words: cable termination, stress control tube, defects of insulation surface, improper tube shrinkage, computer modeling.


Received:    29.03.2016
Accepted:    04.07.2016
Published:  27.10.2016



1. Zeveke G.V., Ionkin P.A., Netushil A.V., Strakhov S.V. Foundations of the circuit theory.  Moskva: Energoatomizdat, 1989.  528 p. (Rus)
2. Progress cable terminations. Advanced designs for cable networks. Kabel-news.  2009.  No 11.  P. 34–36. (Rus)
3. Kuchinskii G.S. Partial discharges in high-voltage constructions. Leningrad: Energiia, 1979.  224 p. (Rus)
4. Makarov Е.F. The handbook on 0.4–35 kV and 110–1150 kV power networks. Vol. 3.  Moskva: Papirus-Pro, 2004.  688 p. (Rus)
5. Medium- and high-voltage power cables with cross-linked polyethylene insulation.  PJSC Zavod "Yuzhkabel".  Kharkov, Ukraine.  56 p. (Rus)
6. Boggs S.A. Semi-empirical high-field conduction model for polyethylene and implications thereof. IEEE Trans. on Dielectrics and Electrical Insulation.  1995.  Vol. 2.  Is. 1.  P. 97–106.
7. Comsol multiphysics modeling and simulation software.  http://www.comsol.com/
8. Dissado L.A., Fothergill J.C. Electrical degradation and breakdown in polymers.  London: Peter Peregrinus Ltd. for IEE, 1992.  601 p. DOI: https://doi.org/10.1049/PBED009E
9. Hampton N. HV and EHV cable system aging and testing issues. Chapter 3.  University System of Georgia, Institute of Technology NEETRAC. National Electric Energy Testing, Research and Application Center.  Georgia Tech Research Corporation, February 2016.  19 p.  http://www.cdfi.gatech.edu/publications/3-HV-Issues-7_with-Copyright.pdf
10. Kucheriava I.M. Electric field distribution in medium-voltage XLPE cable termination taking into account outer semiconducting layer. Tekhnichna elektrodynamika.  2016.  No 3.  P. 12–17.
11. Olsson C.О. Modelling of thermal behaviour of polymer insulation at high electric dc field. Proc. of the 5-th European Thermal-Sciences Conference.  The Netherlands, 18–22 May, 2008.  8 p. Available at: http://citeseerx.ist.psu.edu /viewdoc/download?doi= (accessed 28.03.2016)
12. Strobl R., Haverkamp W., Malin G., Fitzgerald F. Evolution of stress control systems in medium voltage cable accessories. Proc. of Transmission and Distribution Conference and Exposition, IEEE/PES.  2001.  Vol. 2.  P. 843–848. DOI:  https://doi.org/10.1109/TDC.2001.971348