PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2016.05.005

COUPLED ELECTRICAL AND MECHANICAL PROCESSES IN POLYETHYLENE INSULATION WITH WATER TREE HAVING BRANCHES OF COMPLEX STRUCTURE

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 5, 2016 (September/Oktober)
Pages 5 – 10

 

Author
I.M.Kucheriava
Institute of Electrodynamics National Academy of Science of Ukraine, pr. Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

The distributions of electric field, electric force and mechanical stress in the polyethylene insulation of power cable that contains separate branch of a water tree are studied by computer modeling. Two models of water tree branch which include a string of water-filled spherical microcavities connected by cylindrical channels with equal radius and with radius decreasing along the length of the branch are examined. It is shown that the action of electric force and electromechanical stresses at the ends of thinner tree channels can cause their destruction and then growth of water trees in polyethylene insulation. References 15, figures 5, table 1.

 

Key words: polyethylene insulation, micro-sized water-filled cavities and channels, electric field, mechanical stress, computer modeling.

 

Received:    16.02.2016
Accepted:    29.02.2016
Published:  13.09.2016

 

References

1. Boggs S.A. Mechanisms for degradation of TR-XLPE impulse strength during service aging. IEEE Trans. on Power Delivery.  2002.  Vol. 17.  No 2.  P. 308–312. Available at: http://faculty.ims.uconn.edu/~eprcable /ref06.pdf (accessed 15 February 2016). DOI: https://doi.org/10.1109/61.997887
2. Comsol multiphysics modeling and simulation software. Available at: http://www.comsol.com/ (accessed 15.02.16).
3. Crine J.P., Jinder J. A water treeing model. IEEE Trans. on Dielectrics and Electrical Insulation.  2005.  Vol. 12 (4).  P. 801–808. DOI: https://doi.org/10.1109/TDEI.2005.1511105
4. Dissado L.A., Fothergill J.C. Electrical degradation and breakdown in polymers.  London: Peter Peregrinus Ltd. for IEE, 1992.  601 p. DOI: https://doi.org/10.1049/PBED009E
5. Hameyer K., Driesen J., De Gersem H., Belmans R. The classification of coupled field problems. IEEE Trans. on Magnetics.  1999.  Vol. 35.  No 3.  P. 1618–1621. DOI:  https://doi.org/10.1109/20.767304
6. Koo J.Y., Cross J.D., El-Kahel M., Meyer C.T., Filippini J.C. Electrical behavior and structure of water trees in relation to their propagation. Proc. of the IEEE Conference on Electrical Insulation and Dielectric Phenomena.  1983.  P. 301–305.
7. Landau L.D., Livshits Е.M. Electrodynamics of continuous media.  Moskva: Nauka, 1982.  621 p. (Rus)
8. Nunes S.L., Shaw M.T. Water treeing in polyethylene – a review of mechanisms. IEEE Trans. on Electrical Insulation.  1980.  Vol. EI-15.  No 6.  P. 437–450. DOI:  https://doi.org/10.1109/TEI.1980.298272
9. Podoltsev A.D., Kucheriava I.M. Multiphysics modeling in electrical engineering.  Kyiv: Institute of Electrodynamics of National Academy of Sciences, 2015.  305 p. (Rus)
10. Podoltsev A.D., Kucheriava I.M. Multiphysics processes in the region of inclusion in polyethylene insulation of power cable (three-dimensional modeling and experiment). Tekhnichna Elektrodynamika.  2015.  No 3.  P. 3–9. (Rus)
11. Shidlovskij A.K., Shcherba A.A., Zolotarev V.M., Podoltsev O.D., Kucheriava I.M. Extra-high voltage polymeric insulated cables.  Kyiv: Institute of Electrodynamics National Academy of Sciences of Ukraine, 2013. 550 p. (Rus)
12. Shuvalov M.Yu., Obraztsov Yu.V., Ovsienko V.L., Udovitskij P.Yu., Mneka A.S. Growth of water trees in extruded cable insulation as Rebinder effect. Part 1. Kabeli i Provoda. 2006.  No 4 (299).  P. 14–19. (Rus)
13. Steennis E.F., Kreuger F.H. Water treeing in polyethylene cables. IEEE Trans. on Electrical Insulation.  1990.  Vol. 25. Is. 5.  P. 989–1028.
14. Tanaka T., Fukuda T. Residual strain and water trees in XPLE and PE cables. Annual report of the Conference on Electrical insulation and Dielectric Phenomena.  Commission on Sociotechnical Systems, National Research Council, National Academy of Sciences.  Printing and Publishing Office, USA, Washington, 1975.  P. 239–249.
15. Wang Z., Marcolongo P., Lemberg J.A., Panganiban B., Evans J.W., Ritchie R.O., Wright P.K. Mechanical fatigue as a mechanism of water tree propagation in TR-XLPE. IEEE Trans. on Dielectrics and Electrical Insulation.  2012.  Vol. 19.  No 1.  P. 321–330.  DOI: https://doi.org/10.1109/TDEI.2012.6148534

 

PDF